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Abstract

Similarity search is an important task in a wide range of stifec database applications. Besides being
used directly, itis also used as a basic operation for martg dzining algorithms. Example applications
which are presented in this article are functional classificn of proteins in biological databases and
the similarity search of CAD parts in engineering enviromtse It turns out that the general concept of
set-based similarity measures can be successfully aptgibdth of these diverse application domains.

1 Introduction

In the last ten years, an increasing number of databasecapplis has emerged for which efficient and effective
support for similarity search is substantial. The importanf similarity search grows in application areas such
as multimedia, medical imaging, molecular biology, congpuided engineering, marketing and purchasing
assistance, etc. [Jag91, MG93, Fal+94, ALSS95, BKK97, eiRarticularly, the task of finding similar shapes
in 2D and 3D becomes more and more important. Examples forapplications that require the retrieval of
similar 3D objects include databases for molecular bigloggdical imaging and computer aided design.

In recent years, considerable work on similarity searchailalbase systems has been published. Many of the
previous approaches, however, deal with 1D or 2D data, ssitime series, digital images or polygonal data. In
the following, we will shortly list different approaches éstablish similarity measures known from literature.
We provide a classification of the techniques into featrgeld models and direct geometric models.

Feature-Based Similarity. A widely used class of similarity models is based on the ggradf feature
vectors. The basic idea is as follows: Using a feature toansfthe objects are mapped onto a feature vector
in an appropriate multidimensional feature space. Thdaiityi of two objects is then defined as the proximity
of their feature vectors in the feature space: The closer tbature vectors are located, the more similar two
objects are considered.

The paradigm of feature-based similarity has been suadbssipplied to the retrieval of similar spatial
objects. Examples include structural features of 2D castfdG93], angular profiles of polygons [BMH92],
rectangular covers of shapes [Jag91], algebraic momeatiamts [Fal+94], 2D section coding [BKK97], and
3D shape histograms for biomolecular objects [AKKS99]. Mgometric applications include similarity search
on time series [ALSS95], and on color histograms in imagaltiges [Fal+94], among several others.
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Figure 1: Examples of Complex Objects.

Geometry-Based Similarity. A class of models that is to be distinguished from the feabaged techniques
are the similarity models that are defined by directly usheygeometry of the objects. Two objects are consid-
ered similar if they minimize a distance criterion that isgdy defined by the geometry of the objects. Examples
include the similarity retrieval of mechanical parts [SK&Hi the difference volume approach [Kei99], and the
approximation-based similarity model for 3D surface segim@KSS97].

Model-Based Similarity. In this paper, we propose to model complex real world objegisomplex models
(cf. Figure 1). As the development of conventional datalsystems in the recent two decades has shown, the
use of more sophisticated ways to model data can enhancéheodffectiveness and efficiency for applications
using large amounts of data. In this paper, we will use paitg ®© describe CAD objects and graphs are used
to represent protein molecules. The distance measure istindases based on a minimum weight perfect
matching. Furthermore, we will sketch suitable filters foistrather complex distance function to speed up
similarity query processing.

The remainder of the paper is organized as follows. In Se@jeve present a similarity model for voxelized
CAD objects which are represented by sets of feature vectnrSection 3, we present a similarity model for
proteins which are modeled as graphs. The distance funased for measuring the similarity between two
graphs, is based on the distance function used for meaghergmilarity between two CAD objects. We close
this paper in Section 4 with a short summary and a few remarkatare work.

2 Engineering Databases

The development, design, manufacturing and maintenang®dérn engineering products is a very expensive
and complex task. Effective similarity models are requifedtwo- and three-dimensional CAD applications
to cope with rapidly growing amounts of data. Shorter prodycles and a greater diversity of models are
becoming decisive competitive factors in the hard-foughiomobile and aircraft markets. These demands can
only be met if the engineers have an overview of already iegiSCAD parts. In Section 2.2, we present a
similarity model for complex 3D CAD data, which helps to fimitdegroup similar parts. This model is based on
the cover sequence model which is introduced in the follgvaection.



2.1 The Cover Sequence Model

In this section, we adapt a known model [Jag91, JB91] to voxeI3D data, the so-callembver sequence model
The basic idea of this model is to find large clusters of gritchfives, calledcovers which approximate the
object in a best possible way [JB91].

The quality of such a cover sequengg is measured by the symmetric volume differericer;, between
the objectO and the sequencg,. Formally, let the covers be drawn from the €edf all possible rectangular
covers. Then each unitof the cover sequence comprises a pélf € C,0; € {+,—}), where “+" represents
set union and~” represents set difference. The sequence aftamits is:

Sk = (((Coo1C1)02Cs) . .. 01.Ch),

where(Cj is an initially empty cover at the origin.
The symmetric volume difference aftemunits is:

E?”?”k = ‘ O XORSk

, WhereO is the approximated object.

In [Jag91], Jagadish sketches how a 3D cover sequépee (((Coo1C1)o2Cs) ... 01Cy) of an objectO,
can be transformed into @& k-dimensional feature vector. Thereby, each cavgr, with 0 < i < k —11is
mapped onto 6 values in the feature vecftpm the following way:

f8+ = z-position of C; 4
f8*2 = y-position of C;
fgi+3 = z-position ofC;41
fSitt = z-extension o0},
f§i+5 = y-extension of’;
f5i6 —  s-extension ofC;,

2.2 Using Sets of Feature Vectors for Similarity Queries

As proposed in [Jag91] a data object is now represented adwadevector. For similarity queries this method
yields a major problem. Always comparing the two covers hgwhe same ranking according to the symmetric
volume difference, does not make sense in all cases. Twatslgan be considered very different, because of
the order of their covers, although they are very similarriyition. The reason for this effect is that the order
of the covers does not guarantee that the most similar coverso size and position will be stored in the same
dimensions. Especially for objects generating two or morers having almost the same volume, the intuitive
notion of similarity can be seriously disturbed. Thus, tbegibility to match the covers of two compared objects
using more degrees of freedom, might offer a better sinyjlameasure.

The representation of extracted features as a set of vectarsach cover is represented by a 6-dimensional
feature vector, is a generalization of the use of just orgeléeature vector. It is always possible to restrict the
model to a feature space, in which a data object will be cotalyleepresented by just one feature vector. But in
some applications the possibilities of vector set repriadiem allow us to model the dependencies between the
extracted features more precisely. In our application #wtor set representation is able to avoid the problems
that occur by storing a set of covers according to a strictior@iherefore, it is possible to compare two objects
more intuitively, causing a relatively small rise of calatibn cost compared to the cost of distance calculations
in the one-vector model.



2.2.1 Distance Measures on Vector Sets

A distance measure on vector sets that demonstrates totableuior defining similarity in our application is
based on theninimum weight perfect matchimf sets. This well known graph problem can be applied here, by
building a complete bipartite graghi = (S; U Sy, E) between the vector sef§ andS,. The weight of each
edge(z,y) € E with z € S; andy € Sy in this graphG is defined by their distancéist(z,y). A perfect
matching is a subset/ C F that connects each € S to exactly oney € S5 and vice versa. A minimum
weight perfect matching is a matching with a minimum sum ofgles of its edges. Since a perfect match
can only be found for sets of equal cardinality, it is necgssaintroduce weights for unmatched nodes when
defining a distance measure.

Definition 1. (enumeration of a set)
Let S be any finite set of arbitrary elements. Thens a mapping that assigns< S a unique numbef ¢
{1,..,[S]}. This is written ast(S) = (s1, .., 55|)- The set of all possible enumerationsis namedI(S).

Definition 2: (minimal matching distance)

Let O be the domain of the objects addbe a set with X | < k and X C 2V whereV ¢ IR®. Furthermore, let
F : O — X be a mapping of the objects into X, ardist : IR? x IRY — IR a distance function between two
d-dimensional feature vectors. We assume wW.L.pEObj1)| = m > n = |F(Objs)|, F(Obj1) = {x1,...,xm}
andF(Obja) = {y1, .., yn}. Thendist;%st: O x O — IR is defined as follows:

dist%ﬁf“ Obj1,0bj0) = min dist(T iy, yi) + w(x,
(Obj1, Obja) cerBm ) (; (Tr(i)> Vi) l:%;rl ( (l)))

wherew : IR? — IR* is a weight function for the unmatched elements.

The weight functionw provides the penalty given to every unassigned elemento$eh having larger car-
dinality. Let us note thatinimum matching distande a specialization afietflow distancevhich is introduced
in [RBOO]. In [RBOQ] it is proven that netflow distance is a mefand that it is computable in polynomial time.
Though it was shown that the netflow distance can be calcliatpolynomial time, it is not obvious how to
achieve it. Since we are only interested in the minimum matgcHistance, it is enough to calculate a minimum
weight perfect matching. Therefore, we apply the methoggsed by Kuhn [Kuh55] and Munkres [Mun57].
The method is based on the successive augmentation of amsdilig path between both sets. Since it is guaran-
teed that this path can be expanded by one further matchrvétidh step taking (k%) time and since there is a
maximum ofk steps, the all over complexity of a distance calculatiomgitihe method of Kuhn and Munkres is
O(K?) in the worst case. Let us note that for larger numberstbis is far better than the previously mentioned
method ork! many permutations.

For more details about the presented similarity model basests of feature vectors, we refer the interested
reader to [BKK+03]. In [BKK+03], there is also@&ntroid filter presented which helps to accelerate similarity
gueries on vector set represented objects. The basic idbatifor each vector set we compute its centroid.
The difference between the two centroids of the two poirg sates the cardinality of the point sets forms a
lower-bound for the minimal matching distance.

3 Biological Databases

Some of the concepts developed for engineering databasedscebe used in biological databases. Exemplarily,
we describe the application in the field of protein functieadiction.



3.1 Analysis and Prediction of Protein Function

For the analysis and prediction of the interaction of pratethe molecular surface is of particular interest. The
3D geometry of molecules is a highly selective criterion thoe functional interaction of proteins. Advanced
experimental methods for structure determination andppéeation of algorithms to predict protein folds result
in tens of thousands of reliably known molecular conforrai Faced with these increasing data volumes, the
introduction of database techniques to manage the datanescmore and more vital. One important task in this
context is the functional classification of proteins basachomology search. This task can be accomplished
using knn-classifiers for the functionally active 3D-sgdaf protein molecules.

To represent such complex objects as biologically activéeoubes, rich models integrating geometrical,
structural and biochemical information are needed. Theeefwe employ the concept of feature graphs as a
model for protein surfaces, which are a type of attributespfs. They not only allow for the integration of
biochemical information, but also offer the possibility dconsider molecular flexibility, a key feature in this
application domain. This is the basis for an effective figral classification of protein molecules.

3.2 Similarity of Graphs

As graphs are a very general object model, graph similaaty been studied in many fields. Similarity mea-
sures for graphs have been used in systems for shape refH&4d99], object recognition [KKV90] or face
recognition [WFKM97].

A very common similarity measure for graphs is the edit diséa It uses the same principle as the well
known edit distance for strings [Lev66, WF74]. The idea islébermine the minimal number of insertion and
deletions of vertices and edges to make the compared grapm®iphic. In [SF83], Sanfeliu and Fu extended
this principle to attributed graphs, by introducing vertelabeling as a third basic operation beside insertions
and deletions. Unfortunately, the edit distance is a vaneicomplex measure. Zhang, Statman and Shasha
proved in [ZSS92] that the edit distance is MAX—SNP-harchdee unordered labeled trees.

In the field of image retrieval, similarity of attributed giss is sometimes described as an assignment prob-
lem [Pet02], where the similarity distance between two bsais defined as the minimal cost for mapping the
vertices of one graph to those of another graph. With an gpate cost function for the assignment of vertices,
this measure takes the vertex attributes into account andeaevaluated in polynomial time. This assign-
ment measure, which we will call vertex matching distancthenfollowing, obviously completely ignores the
structure of the graphs, i.e. they are just treated as setrtides.

As we just described, all the known similarity measures foitaited graphs have certain drawbacks. Start-
ing from the edit distance and the vertex matching distare@mposed a new method to measure the similarity
of attributed graphs. This method solves the problems meetd above and is useful in the context of large
databases of structured objects. For our similarity measalled the edge matching distance, we rely on the
principle of graph matching, just like in the case of the eentnatching distance. But instead of matching the
vertices of two graphs, we propose a cost function for thechiiag) of edges and then derive a minimal weight
maximal matching between the edge sets of two graphs. Thisiateonly the attribute distribution, but also the
structural relationships of the vertices are taken intaant

Definition 3 (edge matching distance):Let G1(V4, E1) and G3(V2, E;) be two attributed graphs. Without
loss of generality, we assume that; | > | E»|. The complete bipartite grapgf,,,(Ver, = E1U E3 U A, Ey X
(E2 U A)), whereA represents an empty dummy edge, is called the edge matctaph 9fG; andG,. An
edge matching betweefi; and G- is defined as a maximal matching @#.,,. Let there be a non-negative
metric cost functior: : Fy x (Fy UA) — ]Rar. The edge matching distance betwé&enand G5, denoted by
dmaten(G1, G2), 1s defined as the cost of the minimum-weight edge matchibhgdenG; andG» with respect
to the cost function.
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Figure 2: A filter-refinement architecture.

This measure is similar to the matching distance of defmi#oEspecially, the algorithm of Kuhn [Kuh55]
and Munkres[Mun57] can be used to determine the minimungfmenatching, which results in a time-complexi-
ty of O(n?) wheren denotes the number of edges, ie= |E;|.

The edge matching distance has several properties, whicimgortant for the application of the measure
to similarity search and to classification systems. Oneasfdlat that the edge matching distance is a metric.
This allows the application of several methods to speed @rygprocessing. Another such property is the
polynomial time-complexity of the measure as opposed t@#ponential time-complexity of the edit distance.
The polynomial time-complexity is the precondition for gggplication of the measure in large databases, where
the measure has to be calculated repeatedly even when a gingly is processed.

As experiments show, the time-complexity of the edge matghlistance is still too high for use in a clas-
sification system. Therefore we developed techniques faiaft query processing with the edge matching
distance, based on the concept of multi-step query proagssi

Query processing in a multi-step query processing ardiitecas depicted in figure 2, is performed in two
or more steps, where the first steps are filter steps thanrataumber of candidate objects from the database.
For those candidate objects, the exact similarity distamcketermined in the refinement step and the objects
fulfilling the query predicate are reported. To reduce theral search time, the filter steps have to be cheap to
perform and a substantial part of the database objects Hesfiibered out.

Additionally, the completeness of the filter step is essdritie. there must be no false drops during the filter
steps. Available similarity search algorithms guarane@mmeteness if the distance function in the filter step
fulfills the lower-bounding property. This means that thiefidistance between two objects must always be less
than or equal to their exact similarity distance.

Using a multi-step query processing architecture req@ffésent algorithms which actually make use of the
filter step. Agrawal, Faloutsos and Swami proposed suchgamitim for range search [AFS93]. In [SK98] and
[KSF+98] multi-step algorithms for k-nearest-neighboared were presented, which are optimal in the number
of exact distance calculations necessary during queryepsilng. Therefore, we use the latter algorithms in our
classification system.

To employ a filter-refinement architecture we need filterstiieredge matching distance, which cover the
structural as well as the attribute properties of the graplmsder to be effective. A way to derive a filter for a
similarity measure is to approximate the database objectsheen determine the similarity of those approxima-
tions. As an approximation for the structure of a graph wethisesize of that graph, i.e. the number of edges in
the graph. A lower bound for the edge matching distance lmtweo graphs can be derived from the difference
between their sizes. Our filters for the attribute part opgsaare based on the observation that the difference
between the attribute distributions of two graphs influsniteir edge matching distance. Obviously, it is too
complex to determine the exact difference of the attribuséridutions of two graphs in order to use this as a
filter and, therefore, an approximation of those distritmi is needed. We propose a filter for the attribute part
of graphs, which exploits the fact thét, y € IR : |z —y| > ||z| — |y||. For attributes which are associated with
edges, we add all the absolute values for an attribute inghgifeor two graphg-; and G, with equal size, the
difference between those sums is the minimum total diffegdretweerz; andGs for the respective attribute.
Weighted appropriately according to the cost function thatsed, this is a lower bound for the edge matching



distance. For graphs of different size, this is no longeg,tas an edge causing the attribute difference could also
be assigned to an empty edge. Therefore, the differencedrosithe graphs multiplied with the maximum cost
for this attribute has to be subtracted from the previousinguted value, in order to be lower bounding in all
cases.

When considering attributes that are associated withogsrtin the graphs, we have to take into account
that during the distance calculation a verteis compared with several vertices of the second graph, amel
exactly degree(v) many vertices. To take care of this effect, the absolutéate value for a vertex attribute
has to be multiplied with the degree of the vertex, whichiearthis attribute value, before the attribute values
are added in the same manner as for edge attributes. Obyitheslappropriately weighted size difference has
to be subtracted in order to achieve a lower bounding filteresfor a node attribute.

With the above methods it is ensured that the sum of the snalcfilter distance plus all attribute filter
distances is still a lower bound for the edge matching desdretween two graphs. Furthermore, it is possible
to precompute the structural and all attribute filter valued store them in a single vector. This supports efficient
filtering during query processing.

The edge matching distance and the filtering methods are thareughly described in [KS03].

First experiments on the effectiveness and efficiency otlassification approach already show encouraging
results. This underlines the applicability of general apts developed for engineering databases in the area of
biological databases.

4 Conclusions

Similarity search is an important task in a wide range ofrdfie database applications. Besides being used on
its own, it is also a basic operation for many data mining i@pgibns. In this paper, we presented two such data
mining applications from the areas of engineering and bipl&Vith theminimal matching distancand theedge
matching distanceve demonstrated that the concept of a similarity measunedsegt sets can be successfully
applied in two very diverse application areas. Additionalhe presented similarity measure can be efficiently
handled even in large databases using multi-step querggson architectures.

In our future work, we would like to extend the presented et to other application domains as well to
new problems in engineering and bioinformatics.
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