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Abstract

Similarity search is an important task in a wide range of scientific database applications. Besides being
used directly, it is also used as a basic operation for many data mining algorithms. Example applications
which are presented in this article are functional classification of proteins in biological databases and
the similarity search of CAD parts in engineering environments. It turns out that the general concept of
set-based similarity measures can be successfully appliedto both of these diverse application domains.

1 Introduction

In the last ten years, an increasing number of database applications has emerged for which efficient and effective
support for similarity search is substantial. The importance of similarity search grows in application areas such
as multimedia, medical imaging, molecular biology, computer aided engineering, marketing and purchasing
assistance, etc. [Jag91, MG93, Fal+94, ALSS95, BKK97, Kei99]. Particularly, the task of finding similar shapes
in 2D and 3D becomes more and more important. Examples for newapplications that require the retrieval of
similar 3D objects include databases for molecular biology, medical imaging and computer aided design.

In recent years, considerable work on similarity search in database systems has been published. Many of the
previous approaches, however, deal with 1D or 2D data, such as time series, digital images or polygonal data. In
the following, we will shortly list different approaches toestablish similarity measures known from literature.
We provide a classification of the techniques into feature-based models and direct geometric models.

Feature-Based Similarity. A widely used class of similarity models is based on the paradigm of feature
vectors. The basic idea is as follows: Using a feature transform, the objects are mapped onto a feature vector
in an appropriate multidimensional feature space. The similarity of two objects is then defined as the proximity
of their feature vectors in the feature space: The closer their feature vectors are located, the more similar two
objects are considered.

The paradigm of feature-based similarity has been successfully applied to the retrieval of similar spatial
objects. Examples include structural features of 2D contours [MG93], angular profiles of polygons [BMH92],
rectangular covers of shapes [Jag91], algebraic moment invariants [Fal+94], 2D section coding [BKK97], and
3D shape histograms for biomolecular objects [AKKS99]. Non-geometric applications include similarity search
on time series [ALSS95], and on color histograms in image databases [Fal+94], among several others.
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Figure 1: Examples of Complex Objects.

Geometry-Based Similarity.A class of models that is to be distinguished from the feature-based techniques
are the similarity models that are defined by directly using the geometry of the objects. Two objects are consid-
ered similar if they minimize a distance criterion that is purely defined by the geometry of the objects. Examples
include the similarity retrieval of mechanical parts [SKSH89], the difference volume approach [Kei99], and the
approximation-based similarity model for 3D surface segments [KSS97].

Model-Based Similarity. In this paper, we propose to model complex real world objectsby complex models
(cf. Figure 1). As the development of conventional databasesystems in the recent two decades has shown, the
use of more sophisticated ways to model data can enhance boththe effectiveness and efficiency for applications
using large amounts of data. In this paper, we will use point sets to describe CAD objects and graphs are used
to represent protein molecules. The distance measure is in both cases based on a minimum weight perfect
matching. Furthermore, we will sketch suitable filters for this rather complex distance function to speed up
similarity query processing.

The remainder of the paper is organized as follows. In Section 2, we present a similarity model for voxelized
CAD objects which are represented by sets of feature vectors. In Section 3, we present a similarity model for
proteins which are modeled as graphs. The distance functionused for measuring the similarity between two
graphs, is based on the distance function used for measuringthe similarity between two CAD objects. We close
this paper in Section 4 with a short summary and a few remarks on future work.

2 Engineering Databases

The development, design, manufacturing and maintenance ofmodern engineering products is a very expensive
and complex task. Effective similarity models are requiredfor two- and three-dimensional CAD applications
to cope with rapidly growing amounts of data. Shorter product cycles and a greater diversity of models are
becoming decisive competitive factors in the hard-fought automobile and aircraft markets. These demands can
only be met if the engineers have an overview of already existing CAD parts. In Section 2.2, we present a
similarity model for complex 3D CAD data, which helps to find and group similar parts. This model is based on
the cover sequence model which is introduced in the following section.
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2.1 The Cover Sequence Model

In this section, we adapt a known model [Jag91, JB91] to voxelized 3D data, the so-calledcover sequence model.
The basic idea of this model is to find large clusters of grid primitives, calledcovers, which approximate the
object in a best possible way [JB91].

The quality of such a cover sequenceSk is measured by the symmetric volume differenceErrk between
the objectO and the sequenceSk. Formally, let the covers be drawn from the setC of all possible rectangular
covers. Then each uniti of the cover sequence comprises a pair(Ci ∈ C, σi ∈ {+,−}), where “+” represents
set union and “−” represents set difference. The sequence afterk units is:

Sk = (((C0σ1C1)σ2C2) . . . σkCk),

whereC0 is an initially empty cover at the origin.
The symmetric volume difference afterk units is:

Errk = |O XORSk | , whereO is the approximated object.

In [Jag91], Jagadish sketches how a 3D cover sequenceSk = (((C0σ1C1)σ2C2) . . . σkCk) of an objectO,
can be transformed into a6 · k-dimensional feature vector. Thereby, each coverCi+1 with 0 ≤ i ≤ k − 1 is
mapped onto 6 values in the feature vectorfo in the following way:

f6i+1
o = x-position ofCi+1

f6i+2
o = y-position ofCi+1

f6i+3
o = z-position ofCi+1

f6i+4
o = x-extension ofCi+1

f6i+5
o = y-extension ofCi+1

f6i+6
o = z-extension ofCi+1

2.2 Using Sets of Feature Vectors for Similarity Queries

As proposed in [Jag91] a data object is now represented as a feature vector. For similarity queries this method
yields a major problem. Always comparing the two covers having the same ranking according to the symmetric
volume difference, does not make sense in all cases. Two objects can be considered very different, because of
the order of their covers, although they are very similar by intuition. The reason for this effect is that the order
of the covers does not guarantee that the most similar coversdue to size and position will be stored in the same
dimensions. Especially for objects generating two or more covers having almost the same volume, the intuitive
notion of similarity can be seriously disturbed. Thus, the possibility to match the covers of two compared objects
using more degrees of freedom, might offer a better similarity measure.

The representation of extracted features as a set of vectors, i.e. each cover is represented by a 6-dimensional
feature vector, is a generalization of the use of just one large feature vector. It is always possible to restrict the
model to a feature space, in which a data object will be completely represented by just one feature vector. But in
some applications the possibilities of vector set representation allow us to model the dependencies between the
extracted features more precisely. In our application the vector set representation is able to avoid the problems
that occur by storing a set of covers according to a strict order. Therefore, it is possible to compare two objects
more intuitively, causing a relatively small rise of calculation cost compared to the cost of distance calculations
in the one-vector model.
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2.2.1 Distance Measures on Vector Sets

A distance measure on vector sets that demonstrates to be suitable for defining similarity in our application is
based on theminimum weight perfect matchingof sets. This well known graph problem can be applied here, by
building a complete bipartite graphG = (S1 ∪ S2, E) between the vector setsS1 andS2. The weight of each
edge(x, y) ∈ E with x ∈ S1 andy ∈ S2 in this graphG is defined by their distancedist(x, y). A perfect
matching is a subsetM ⊆ E that connects eachx ∈ S1 to exactly oney ∈ S2 and vice versa. A minimum
weight perfect matching is a matching with a minimum sum of weights of its edges. Since a perfect match
can only be found for sets of equal cardinality, it is necessary to introduce weights for unmatched nodes when
defining a distance measure.

Definition 1: (enumeration of a set)
Let S be any finite set of arbitrary elements. Thenπ is a mapping that assignss ∈ S a unique numberi ∈
{1, .., |S|}. This is written asπ(S) = (s1, .., s|S|). The set of all possible enumerations ofS is namedΠ(S).

Definition 2: (minimal matching distance)
Let O be the domain of the objects andX be a set with|X| ≤ k andX ⊆ 2V whereV ⊂ IRd. Furthermore, let
F : O → X be a mapping of the objects into X, anddist : IRd × IRd → IR a distance function between two
d-dimensional feature vectors. We assume w.l.o.g.|F (Obj1)| = m ≥ n = |F (Obj2)|, F (Obj1) = {x1, .., xm}
andF (Obj2) = {y1, .., yn}. Thendistw,dist

mm : O × O → IR is defined as follows:

distw,dist
mm (Obj1, Obj2) = min

π∈Π(F (Obj1))





n
∑

i=1

dist(xπ(i), yi) +
m

∑

l=n+1

w(xπ(l))





wherew : IRd → IR+ is a weight function for the unmatched elements.

The weight functionw provides the penalty given to every unassigned element of the set having larger car-
dinality. Let us note thatminimum matching distanceis a specialization ofnetflow distancewhich is introduced
in [RB00]. In [RB00] it is proven that netflow distance is a metric and that it is computable in polynomial time.
Though it was shown that the netflow distance can be calculated in polynomial time, it is not obvious how to
achieve it. Since we are only interested in the minimum matching distance, it is enough to calculate a minimum
weight perfect matching. Therefore, we apply the method proposed by Kuhn [Kuh55] and Munkres [Mun57].
The method is based on the successive augmentation of an alternating path between both sets. Since it is guaran-
teed that this path can be expanded by one further match within each step takingO(k2) time and since there is a
maximum ofk steps, the all over complexity of a distance calculation using the method of Kuhn and Munkres is
O(k3) in the worst case. Let us note that for larger numbers ofk this is far better than the previously mentioned
method onk! many permutations.

For more details about the presented similarity model basedon sets of feature vectors, we refer the interested
reader to [BKK+03]. In [BKK+03], there is also acentroid filter presented which helps to accelerate similarity
queries on vector set represented objects. The basic idea isthat for each vector set we compute its centroid.
The difference between the two centroids of the two point sets times the cardinality of the point sets forms a
lower-bound for the minimal matching distance.

3 Biological Databases

Some of the concepts developed for engineering databases can also be used in biological databases. Exemplarily,
we describe the application in the field of protein function prediction.
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3.1 Analysis and Prediction of Protein Function

For the analysis and prediction of the interaction of proteins, the molecular surface is of particular interest. The
3D geometry of molecules is a highly selective criterion forthe functional interaction of proteins. Advanced
experimental methods for structure determination and the application of algorithms to predict protein folds result
in tens of thousands of reliably known molecular conformations. Faced with these increasing data volumes, the
introduction of database techniques to manage the data becomes more and more vital. One important task in this
context is the functional classification of proteins based on homology search. This task can be accomplished
using knn-classifiers for the functionally active 3D-surface of protein molecules.

To represent such complex objects as biologically active molecules, rich models integrating geometrical,
structural and biochemical information are needed. Therefore, we employ the concept of feature graphs as a
model for protein surfaces, which are a type of attributed graphs. They not only allow for the integration of
biochemical information, but also offer the possibility toconsider molecular flexibility, a key feature in this
application domain. This is the basis for an effective functional classification of protein molecules.

3.2 Similarity of Graphs

As graphs are a very general object model, graph similarity has been studied in many fields. Similarity mea-
sures for graphs have been used in systems for shape retrieval [HCH99], object recognition [KKV90] or face
recognition [WFKM97].

A very common similarity measure for graphs is the edit distance. It uses the same principle as the well
known edit distance for strings [Lev66, WF74]. The idea is todetermine the minimal number of insertion and
deletions of vertices and edges to make the compared graphs isomorphic. In [SF83], Sanfeliu and Fu extended
this principle to attributed graphs, by introducing vertexrelabeling as a third basic operation beside insertions
and deletions. Unfortunately, the edit distance is a very time-complex measure. Zhang, Statman and Shasha
proved in [ZSS92] that the edit distance is MAX–SNP–hard even for unordered labeled trees.

In the field of image retrieval, similarity of attributed graphs is sometimes described as an assignment prob-
lem [Pet02], where the similarity distance between two graphs is defined as the minimal cost for mapping the
vertices of one graph to those of another graph. With an appropriate cost function for the assignment of vertices,
this measure takes the vertex attributes into account and can be evaluated in polynomial time. This assign-
ment measure, which we will call vertex matching distance inthe following, obviously completely ignores the
structure of the graphs, i.e. they are just treated as sets ofvertices.

As we just described, all the known similarity measures for attributed graphs have certain drawbacks. Start-
ing from the edit distance and the vertex matching distance we proposed a new method to measure the similarity
of attributed graphs. This method solves the problems mentioned above and is useful in the context of large
databases of structured objects. For our similarity measure, called the edge matching distance, we rely on the
principle of graph matching, just like in the case of the vertex matching distance. But instead of matching the
vertices of two graphs, we propose a cost function for the matching of edges and then derive a minimal weight
maximal matching between the edge sets of two graphs. This way not only the attribute distribution, but also the
structural relationships of the vertices are taken into account.

Definition 3 (edge matching distance):Let G1(V1, E1) and G2(V2, E2) be two attributed graphs. Without
loss of generality, we assume that|E1| ≥ |E2|. The complete bipartite graphGem(Vem = E1 ∪ E2 ∪ ∆, E1 ×
(E2 ∪ ∆)), where∆ represents an empty dummy edge, is called the edge matching graph ofG1 andG2. An
edge matching betweenG1 andG2 is defined as a maximal matching inGem. Let there be a non-negative
metric cost functionc : E1 × (E2 ∪ ∆) → IR+

0 . The edge matching distance betweenG1 andG2, denoted by
dmatch(G1, G2), is defined as the cost of the minimum-weight edge matching betweenG1 andG2 with respect
to the cost functionc.

5



filter
candidates

resultrefinement

Figure 2: A filter-refinement architecture.

This measure is similar to the matching distance of definition 2. Especially, the algorithm of Kuhn [Kuh55]
and Munkres[Mun57] can be used to determine the minimum-weight matching, which results in a time-complexi-
ty of O(n3) wheren denotes the number of edges, i.e.n = |E1|.

The edge matching distance has several properties, which are important for the application of the measure
to similarity search and to classification systems. One is the fact that the edge matching distance is a metric.
This allows the application of several methods to speed up query processing. Another such property is the
polynomial time-complexity of the measure as opposed to theexponential time-complexity of the edit distance.
The polynomial time-complexity is the precondition for theapplication of the measure in large databases, where
the measure has to be calculated repeatedly even when a single query is processed.

As experiments show, the time-complexity of the edge matching distance is still too high for use in a clas-
sification system. Therefore we developed techniques for efficient query processing with the edge matching
distance, based on the concept of multi-step query processing.

Query processing in a multi-step query processing architecture, as depicted in figure 2, is performed in two
or more steps, where the first steps are filter steps that return a number of candidate objects from the database.
For those candidate objects, the exact similarity distanceis determined in the refinement step and the objects
fulfilling the query predicate are reported. To reduce the overall search time, the filter steps have to be cheap to
perform and a substantial part of the database objects has tobe filtered out.

Additionally, the completeness of the filter step is essential, i.e. there must be no false drops during the filter
steps. Available similarity search algorithms guarantee completeness if the distance function in the filter step
fulfills the lower-bounding property. This means that the filter distance between two objects must always be less
than or equal to their exact similarity distance.

Using a multi-step query processing architecture requiresefficient algorithms which actually make use of the
filter step. Agrawal, Faloutsos and Swami proposed such an algorithm for range search [AFS93]. In [SK98] and
[KSF+98] multi-step algorithms for k-nearest-neighbor search were presented, which are optimal in the number
of exact distance calculations necessary during query processing. Therefore, we use the latter algorithms in our
classification system.

To employ a filter-refinement architecture we need filters forthe edge matching distance, which cover the
structural as well as the attribute properties of the graphsin order to be effective. A way to derive a filter for a
similarity measure is to approximate the database objects and then determine the similarity of those approxima-
tions. As an approximation for the structure of a graph we usethe size of that graph, i.e. the number of edges in
the graph. A lower bound for the edge matching distance between two graphs can be derived from the difference
between their sizes. Our filters for the attribute part of graphs are based on the observation that the difference
between the attribute distributions of two graphs influences their edge matching distance. Obviously, it is too
complex to determine the exact difference of the attribute distributions of two graphs in order to use this as a
filter and, therefore, an approximation of those distributions is needed. We propose a filter for the attribute part
of graphs, which exploits the fact that∀x, y ∈ IR : |x− y| ≥ ||x|− |y||. For attributes which are associated with
edges, we add all the absolute values for an attribute in a graph. For two graphsG1 andG2 with equal size, the
difference between those sums is the minimum total difference betweenG1 andG2 for the respective attribute.
Weighted appropriately according to the cost function thatis used, this is a lower bound for the edge matching

6



distance. For graphs of different size, this is no longer true, as an edge causing the attribute difference could also
be assigned to an empty edge. Therefore, the difference in size of the graphs multiplied with the maximum cost
for this attribute has to be subtracted from the previously computed value, in order to be lower bounding in all
cases.

When considering attributes that are associated with vertices in the graphs, we have to take into account
that during the distance calculation a vertexv is compared with several vertices of the second graph, namely
exactlydegree(v) many vertices. To take care of this effect, the absolute attribute value for a vertex attribute
has to be multiplied with the degree of the vertex, which carries this attribute value, before the attribute values
are added in the same manner as for edge attributes. Obviously, the appropriately weighted size difference has
to be subtracted in order to achieve a lower bounding filter value for a node attribute.

With the above methods it is ensured that the sum of the structural filter distance plus all attribute filter
distances is still a lower bound for the edge matching distance between two graphs. Furthermore, it is possible
to precompute the structural and all attribute filter valuesand store them in a single vector. This supports efficient
filtering during query processing.

The edge matching distance and the filtering methods are morethoroughly described in [KS03].
First experiments on the effectiveness and efficiency of ourclassification approach already show encouraging

results. This underlines the applicability of general concepts developed for engineering databases in the area of
biological databases.

4 Conclusions

Similarity search is an important task in a wide range of scientific database applications. Besides being used on
its own, it is also a basic operation for many data mining applications. In this paper, we presented two such data
mining applications from the areas of engineering and biology. With theminimal matching distanceand theedge
matching distancewe demonstrated that the concept of a similarity measure between sets can be successfully
applied in two very diverse application areas. Additionally, the presented similarity measure can be efficiently
handled even in large databases using multi-step query processing architectures.

In our future work, we would like to extend the presented concepts to other application domains as well to
new problems in engineering and bioinformatics.
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