
Institut für Informatik
Der

Ludwig-Maximilians Universität
München

Diplomarbeit

The XO-tree

Object oriented design, implementation and
evaluation of an index structure for

high-dimensional data spaces, based on ovaloid
approximation.

Aufgabensteller : Prof. Dr. Hans-Peter Kriegel
Betreuer : Dr. Christian Böhm
Bearbeiter : Stefan Schönauer
Abgabedatum : 22. Januar 1999

 i

Erklärung

Hiermit erkläre ich, daß ich diese Arbeit selbständig verfaßt und keine anderen als
die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 22.1.1999 ...

 ii

Acknowledgements
I would like to thank all the people who supported me during the time I worked on

this thesis. First of all Professor Dr. Hans-Peter Kriegel, who made this work

possible. The most important person is this context is certainly Dr. Christian

Böhm, whose care and support helped through all the ups and downs of this work.

Special thanks goes to Gabi Kastenmüller and Gerald Klump. They let the sun

shine in the windowless room. Some fruitful discussions about the X-tree took

place with Jörn Kohlhammer. Franz Krojer took excellent care of all the technical

equipment and always had time for my major and minor problems with it.

Mischa Schirmer and Thomas Trautmann were willing to discuss about this work

any time and inspired several important parts of it.

Finally, I would like to thank all my friends and family for their love, care and

support, no matter what mood I was in.

 iii

Abstract (in German)
Mit der Entwicklung hin zur „Wissensgesellschaft“, gewinnen moderne

Datenbanken mit mächtigen Suchwerkzeugen zur Identifikation der relevanten

Informationen immer mehr an Bedeutung. Damit einher geht die Erschließung

neuer Anwendungsgebiete, wie z. B. CAD, Multimedia, Molekularbiologie und

die Analyse von Zeitreihen. Gerade in diesen sogenannten Nicht-Stan-

dard-Anwendungen von Datenbanksystemen ist die Ähnlichkeitssuche in großen

Datenmengen eine wesentliche Funktion.

Für die Ähnlichkeitssuche werden die Datenobjekte meist mittels einer

sogenannten Feature-Transformation in einen hochdimensionalen Vektorraum

übertragen. Daher ist der Einsatz einer performanten multidimensionalen

Indexstruktur Voraussetzung für eine effiziente Anfragebearbeitung auf diesem

Gebiet.

Das Ziel dieser Arbeit war es daher, eine Indexstruktur für solch

hochdimensionale Vektorräume zu entwickeln und zu testen. Dazu wurden

zunächst bekannte multidimensionale Indexstrukturen untersucht. Dies waren der

R*-Baum, der X-Baum, der SS-Baum, sowie der SR-Baum und der TV-Baum. Es

wurde dabei herausgearbeitet, daß die Performanz einer Struktur wesentlich von

der Überlappung im Index beeinflußt wird. Die wichtigsten Einflußfaktoren für

die Überlappung im Index sind dabei die Form der verwendeten Seitenregion und

die Algorithmen zum Aufbau der Struktur.

Im weiteren wurden verschiedene Formen von Seitenregionen mit ihren Vor- und

Nachteilen besprochen. Bei der Wahl einer Seitenregion für eine sollte darauf

geachtet werden, daß der „tote Raum“ minimiert wird. Damit ist der Teil des

Datenraums gemeint, der zwar von der Seitenregion überdeckt wird, jedoch keine

 iv

Datenobjekte enthält. Diese Minimierung trägt wesentlich dazu bei, die

Überlappung im Index zu verringern. Dabei müssen allerdings zwei Faktoren

berücksichtigt werden. Zum einen sollte der Speicherplatzbedarf einer

Seitenregion nicht zu groß sein. Andernfalls gerät der entstehende Index zu hoch,

was zu einer verminderten Performanz führt. Als zweiter wichtiger Faktor ist die

Komplexität einiger Basisoperationen auf Seitenregionen anzuführen. Diese

Operationen werden von den Anfragealgorithmen benötigt und sollten daher

effizient auszuwerten sein, um Anfragen möglichst schnell beantworten zu

können.

Basierend auf diesen Ergebnissen, wurde der XO-Baum entwickelt. Diese neue

Indexstruktur fußt auf dem X-Baum, wobei drei neue Formen von Seitenregionen

eingeführt wurden. Dies sind Ovaloide, der Schnittkörper aus einem Ovaloid und

einem achsenparallelen minimal umgebenden Rechteck und die sogenannte

„corner-cut“-Approximation. Sie wurden alle entwickelt, um den toten Raum, der

von einer Seitenregion überdeckt wird, zu minimieren und gleichzeitig die

Komplexität der Basisoperationen gering zu halten. Zusätzlich wurde der

Einfügealgorithmus überarbeitet, um die Minimierung der Überlappung im Index

weiter zu optimieren.

Experimente sowohl mit künstlichen, wie mit Realdaten zeigen, daß der

XO-Baum für fast alle Anfragetypen ein besseres Leistungsverhalten als der

X-Baum zeigt. Im ungünstigsten Fall ist das Leistungsverhalten der beiden

Indexstrukturen indentisch. Die Leistungssteigerung liegt meist bei einem Faktor

von zwei. Des weiteren zeigen die Experimente, daß der Schnittkörper aus einem

Ovaloid und einem achsenparallelen minimal umgebenden Rechteck nicht zur

gewünschten Leistungssteigerung führt, wohingegen die anderen beiden neuen

Formen von Seitenregionen gleichermaßen guten Ergebnisse für alle Anfragetype

liefern. Der XO-Baum erlaubt damit die effiziente Indexierung hochdimensionaler

Datenräume, besonders aber solcher mit zehn bis zwanzig Dimensionen.

 v

Table of Contents

ERKLÄRUNG ... I

ACKNOWLEDGEMENTS ...II

ABSTRACT (IN GERMAN) ... III

1 INTRODUCTION ...1

1.1 APPLICATIONS USING NON-STANDARD DATABASE SYSTEMS.......................2

1.1.1 Similar Geometric shapes in CAD Databases.....................................2

1.1.2 Similarity of Color Images Based on Histograms4

1.1.3 Molecular Biology ...5

1.1.4 Time Sequence Analysis...7

1.2 FEATURE TRANSFORMATION ..8

1.2.1 Object Distance ...8

1.2.2 Feature Distance ...9

1.2.3 Multi-Step Query Processing...9

1.2.4 Index Structures ...10

2 RELATED WORK..12

2.1 TREES AND QUERIES...12

2.1.1 Basic Definitions..12

2.1.2 Trees ..14

2.1.3 Queries...16

2.2 THE R*-TREE...21

2.3 THE X-TREE..26

2.4 THE SS-TREE ..28

 vi

2.5 THE SR-TREE..29

2.6 THE TV-TREE ...31

3 REGIONS...34

3.1 THE PURPOSE OF REGIONS..34

3.2 PROPERTIES OF REGION DESCRIPTIONS ..35

3.2.1 Approximations..35

3.2.2 Complexity of the operations ...37

3.3 MINIMAL BOUNDING RECTANGLES ..37

3.4 POLYGONS..38

3.5 SPHERES ...39

3.6 ELLIPSOIDS ...41

3.7 INTERSECTION OF SPHERE AND RECTANGLE...42

3.8 SUMMARY ..44

4 THE XO-TREE..45

4.1 DESIGN OBJECTIVES ...45

4.1.1 The Insertion Process ..45

4.1.2 The Page Region..46

4.2 THE PAGE REGION OF THE XO-TREE ..46

4.2.1 Ovaloids...47

4.2.2 Intersection between Ovaloid and MBR..50

4.2.3 The “Corner-cut” Approximation ...51

4.3 THE STRUCTURE OF THE XO-TREE ...54

4.4 ALGORITHMS OF THE XO-TREE ..55

4.4.1 Insert ..55

4.4.2 Delete ..59

4.4.3 Update ...61

5 EXPERIMENTAL RESULTS ...62

5.1 EXPERIMENTAL SETUP..62

5.2 RESULTS ...63

5.2.1 Point Query..63

5.2.2 Range Query ..66

5.2.3 Nearest Neighbor Query..68

5.2.4 K-nearest Neighbor Query ..71

 vii

5.3 SUMMARY ..73

6 CONCLUSION AND FUTURE WORK...75

6.1 CONCLUSION ..75

6.2 FUTURE WORK ...76

APPENDIX...77

A LIST OF FIGURES...78

B LIST OF DEFINITIONS ..78

C REFERENCE...81

1 Introduction 1

1 Introduction
Today’s economy depends massively on fast and efficient access to information. It is

undoubted that this dependency will even increase in the future. The problem,

however, is not so much the collection of information, as a vast amount of data is

produced everyday in each enterprise. What is needed, are tools to find the relevant

information for a specific task effectively and efficiently.

If the information that is searched is of simple structure, like one-dimensional

numerical attributes or character strings, there exist widely accepted solutions to the

problem. The index structures provided by database management systems (DBMS),

like the B+-tree [BM 77], are well suited for this type of data.

In recent years, the number of applications that need to process large numbers of

complex data objects is growing rapidly [Jag 91, FRM 94, Ber 97, Kei 97,

Sei 97]. In application domains such as multimedia, medical imaging, molecular

design, computer aided design etc., complex data objects are common. In these, so

called non-standard databases, the search is often driven by some notion of

similarity rather than the exact match of objects. Nevertheless, efficient search tools

are essential there, due to the enormous and even increasing size of such databases.

This makes index structures necessary, which are specifically designed for

high-dimensional data spaces to index the complex and high-dimensional data

objects in non-standard databases. Such an index structure will be developed in the

forthcoming chapters. First, however, we will examine a few applications using

non-standard databases and inspect some of the requirements they impose on the

DBMS. Afterwards some prerequisites for the similarity search process will be

discussed.

1 Introduction 2

1.1 Applications using Non-Standard Database

Systems

1.1.1 Similar Geometric shapes in CAD Databases

Most current Computer Aided Design (CAD) systems are file based and do not use

any database technology. Some modern CAD systems, however, use

object-relational or object-oriented database technology to store the objects. While

this supports data independence, concurrency and recovery, the search facilities are

limited to simple operations like the retrieval of an object according to its key.

The S3-System (Similarity Search System), developed in a recent research project

[Ber 97, BK 97, BKK 97], provides a powerful tool for the search of similar parts.

The scope of the project was to reduce the diversity of parts, namely plastic clips, in

the car industry and avoid the redesign of parts for which similar designs already

exist. The avoidance of redesigns bears a great cost saving potential because

mounting tools and injection moulds can be reused and manpower can be saved. The

objects in the S3-projects were two-dimensional. Consequently, another application

domain for the search of similar shapes uses similar techniques: computer vision

[Jag 91, GM 93, MG 93].

A distinctive measure between the applications is the way they define the similarity

of two objects. These definitions differ not only in the way they are derived, but also

in their properties. Consequently, different similarity measures yield often different

invariances, which may be meaningful and desired in one context, but meaningless

or even unwanted in others. Here a few of the invariances that are usually considered

as important:

• Translation invariance

• Rotation invariance

• Invariance with respect to uniform and non-uniform scaling

• Shearing invariance

• Invariance with respect to partial object occlusion

1 Introduction 3

Moreover, a distinction between partial and total similarity can be made. In this

context, total similarity means that two objects are over all similar, where in partial

similarity the objects only have to be similar in some detail.

In the S3-project, similarity for two-dimensional polygons is defined in two different

ways. In the first definition, section coding is used, which is based on volume

coincidence. Starting at the center of gravity, the object is cut into pieces like a cake

(cf. figure 1). The relative volume of each piece that is covered by the object is

determined and the vector of all these ratios is used as a feature vector to determine

the similarity of two objects. Seidl and Kriegel [Sei 97, KKS 98] extend this model

by using the more general quadratic form distance instead of the Euclidean metric for

the determination of the feature distance (cf. section 1.1.2). This way, vicinity

properties of vectors can be taken into account, making the model more realistic.

Section coding is invariant with respect to scaling, translation and (to a limited

degree) rotation.

Figure 1: Section Coding.

The boundary of the polygon forms the basis for the second similarity measure of the

S3-project. The line segments of the polygon are transformed into a parametric form

by determining their curvature. The coefficients of the Fourier transformed

parametric form are then, again, interpreted as vectors in Euclidean space. Total

similarity is defined by applying this technique to the entire polygon. To determine

partial similarity, the object is separated into sequences of line segments with fixed

length. The parameterization and the Fourier transformation are then applied to each

of the sequences separately.

1 Introduction 4

Jagadish [Jag 91] uses a different technique to define the similarity of

two-dimensional shapes. The basis for this is a rectilinear cover of the object, i.e. a

cover consisting of axis-parallel rectangles (cf. figure 2). The rectangles covering the

object are sorted by size and the largest ones are used as key for an index. Due to

normalization prior to the determination of the cover, this technique achieves

invariance with respect to scaling and translation, but is not rotation invariant.

Figure 2: Rectangular Cover of an Object [Jag 91].

Another method is used by the QBIC (Query By Image Content) system [FBFH 94],

which also contains a component for 2-D shape retrieval. The method, which expects

shapes as sets of points, is based on algebraic moment invariants and can be used for

3-D objects [TC 91], too. Invariance with respect to rigid transformations

(translations and rotations) is inherent to this method. This is an important feature in

a CAD database. Nevertheless, there are few possibilities to adjust the method to

specific application domains. From all the available moment invariants, the

appropriate ones have to be chosen and their weighting factors may be changed.

1.1.2 Similarity of Color Images Based on Histograms

The QBIC system just mentioned defines the similarity of two color images based on

the color distribution in the pictures. Two images are defined as similar, if they

contain the same colors with similar frequency. The distribution of the colors is

called color histogram. The histogram of a picture is obtained by determining for

each color, the ratio of pixels with that specific color. This takes place, after the color

spectrum has been reduced and normalized to a manageable size (cf. figure 3).

1 Introduction 5

Figure 3: Two similar images and corresponding 112-D color histograms [Sei 97].

Seidl and Kriegel [SK 97] also use histograms as feature vectors. They do not define

the similarity of two histograms as their Euclidean distance. Although this approach

seems natural, it would result in the difficulty that all pairs of different colors are

seen as equally dissimilar. To a human, however, some colors are rather similar (e.g.

red and orange) whereas others are very dissimilar (e.g. red and green). This can be

taken into account, if not the Euclidean distance between two histogram vectors is

determined, but the following quadratic form distance metric is used instead:

T
A yxAyxyx)()(),(2 −⋅⋅−=δ

Here, the similarity matrix A contains the information, which colors are similar to

each other and in what degree. With this similarity matrix, the method can easily be

adjusted to the specific needs of an application domain. Both, the QBIC system

[FBFH 94] and Seidl and Kriegel [SK 97] use the quadratic form distance metric to

define the similarity of color images.

1.1.3 Molecular Biology

Molecular biology is another field where similarity queries are of great importance.

Most biological functions in organisms are performed by the interaction of proteins.

For the function of a protein, its three-dimensional structure is the defining property,

i.e. proteins with a similar geometrical structure usually have a similar function.

1 Introduction 6

With this in mind, the prediction of molecular interaction obviously becomes an

interesting and important challenge. Two molecules interact, if they have a

complementary surface structure with respect to geometric shape and

electromagnetic and chemical properties. Apparently, finding a molecule with a

complementary structure is closely related with the similarity search problem. The

method of choice is simply to build the complement of the query object and then

retrieve all objects from the database, which are similar to the complementary object.

Figure 4: Two Docking Proteins [Sei 97].

Kriegel, Schmidt and Seidl [KSS 97, KS 98] define the similarity of two molecule

surfaces by fitting standard segments, e.g. paraboloids, to the molecular surface and

then determine the approximation error. The mutual approximation error is then used

to measure the (dis-)similarity of the two molecules. They use the three-dimensional

structures of molecules as provided by the Brookhaven Protein Data Bank, which

contains more than 3000 molecules.

1 Introduction 7

1.1.4 Time Sequence Analysis

Figure 5: DAX Performance Index (Source: Frankfurt Stock Exchange).

Time sequence analysis is especially important in economic, but also in other

sciences. It is often used in data mining applications to:

• Determine products with similar selling patterns

• Identify customers with similar buying behavior

• Discover stocks with similar price movements (cf. figure 5)

• Identify populations with a similar development in size

Time sequence analysis can be divided into two categories. The first is whole

matching, where the entire sequences, which must have the same length n, have to be

similar. With subsequence matching, the query sequence is smaller and a

subsequence of a larger sequence, which matches the query sequence best, is

searched.

1 Introduction 8

Agrawal, Faloutsos and Swami present a method for whole matching of

one-dimensional sequence data in [AFS 93]. They use the square root of the sum of

squared differences between two sequences x and y as similarity measure:

∑
<≤

−=
nt

tt yxyx
0

2)(),(δ

This corresponds with the Euclidean distance of vectors and with the energy of the

difference signal in a signal theoretic sense. To obtain vectors of a reasonable size,

the sequences are mapped to a low-dimensional feature space using the Discrete

Fourier Transform.

The method was later generalized for subsequence matching [FRM 94], and

searching in the presence of noise, scaling and translation [ALSS 95].

1.2 Feature Transformation

The notions of similarity in the applications above seem rather different from each

other. However, they have a few properties in common, which allow the use of the

same indexing and query techniques for all of them.

1.2.1 Object Distance

An important community of the similarity measures in all the sample applications is

the fact that similarity is defined in terms of a distance between two objects.

Consequently, a similarity measure δ assigns a positive value to a pair of objects,

which is a measure for the similarity of the two objects:

+ℜ→× 0: OOδ

The higher δ is for a pair of objects, the less similar are those objects. Generally δ is

chosen so that it yields zero if and only if the two objects are identical, although this

may not be necessary in some applications. Due to its properties, δ is called the

object distance. In all the applications above, δ fulfills the requirements for a metric,

as it is positive, symmetric and fulfills the triangle inequality. This lead to the

development of several query processing techniques, which can handle objects in a

metric space directly, in recent time [Yia 93, Chi 94, CPZ 97]. Nevertheless, none of

these structures was applied in any of the sample applications, because these

structures lack the performance required by those applications.

1 Introduction 9

1.2.2 Feature Distance

Usually, operations on the real objects are very costly, because of the complexity of

the object description. To avoid this and achieve an efficient similarity query

processing, a so-called feature transformation is applied. This means that important

features of the objects in the database are extracted and transformed into

d-dimensional vectors in a vector space (feature vectors). The feature transformation

is defined in a way that the distance between the feature vectors, the feature distance,

either corresponds with the object distance or is at least a lower boundary to this

distance. Consequently, the similarity search can easily be expressed as a range

query in the feature space.

The feature transformation has to extract the most important and distinguishing

properties of the objects in order to yield a good query performance. Therefore, it

will usually be provided by an expert in the corresponding application domain. In the

S3-project two different feature transformations were used: section coding and

Fourier transform of line segments. In the molecular biology example, the features

were extracted by approximating the objects using standard surfaces as paraboloids.

Color histograms were the feature vectors of the image database systems and the

Discrete Fourier transform was used in the time sequence database example. One

can proof that in all these cases, the feature distance is a lower bound of the objects

distance. This is a necessary condition to avoid false dismissals and ensure the

correctness of the query algorithms.

1.2.3 Multi-Step Query Processing

If the feature distance does not directly correspond with the object distance, but is

only a lower bound, ambiguities may be introduced. To handle these ambiguities a

multi-step query processing is necessary. This query processing consists of two parts.

In the so-called filter step, a range query on the feature space is processed. The result

of this is a set of candidates. As the feature distance is a lower bound of the object

distance, it is guaranteed that each object contained in the query range is also in the

candidate set (no false dismissals), but not every object in the candidate set has to be

an actual answer to the similarity query. Therefore, the objects in the candidate set

have to be tested in object space if they are part of the answer set. This is done in the

next phase, which is named refinement step. Obviously, this multi-step query

1 Introduction 10

processing yields a good performance only if the filter selectivity is good, i.e. only a

few candidates have to be tested in object space.

Figure 6: Multi-Step Query Processing of Similarity Queries.

Figure 6 shows the entire multi-step query processing. An index of the feature

vectors is used to process the range query of the filter step. Afterwards, the objects in

the candidate set have to be loaded and the false hits are excluded in the refinement

step. The algorithm for the refinement step is application specific and will not be

considered here. The filter step, however, is identical for any application. It should

therefore be supported by a database management system. Consequently, we will

concentrate on query processing in feature space from now on.

1.2.4 Index Structures

For the performance of the filter step, appropriate support by a multi-dimensional

index structure is crucial. For data spaces with sufficiently small dimension, e.g. 3,

index structures like the grid file [NHS 84], the kd-tree [Ben 75, Ben 79] or the

R*-tree [BKSS 90] can be used. However, these index structures show an

insufficient performance if the dimension is high, e.g. 16. The term ‘curse of

dimensionality’ is used to describe this problem. It is based on the fact that most

measures one could define in a vector space, e.g. volume or perimeter, depend

1 Introduction 11

exponentially on the dimension of the vector space. Therefore, many approaches

work well only in low-dimensional data spaces where the exponent is small enough.

Unfortunately, in many applications indexes for high-dimensional data spaces are

needed. This led to the development of several index structures specifically designed

to deal with the problems in high-dimensional spaces, like the SS-tree [WJ 96] or the

X-tree [BKK 96].

2 Related Work 12

2 Related Work
Numerous different tree structures were proposed for the indexation of multi-

dimensional data. They can be divided into two classes. On the one hand there are

data organizing structures such as R-trees [Gut 84, BKSS 90] on the other hand the

space organizing structures such as Multidimensional Hashing [HSW 88a, KS 86,

KS 87, Oto 84] or grid-files [NHS 84, Fre 87, Hin 85, HSW 88b, KW 85, KS

88, Ouk 85]. As hashing-based structures do not play an important role in

multidimensional indexing, only members of the first class will be discussed. In this

chapter, a collection of them, which influenced the development of the XO-tree, will

be presented. We start with some basic definitions and a short introduction on tree

structures and query types. The R*-tree that follows forms the basis for all the other

index structures presented. The X-tree was the basis for the XO-tree structure

developed in the next two chapters. After the SS-tree with its different approximation

technique, the SR-tree represents a similar approach as the XO-tree. The chapter

closes with a brief description of the TV-tree and its main concepts.

2.1 Trees and Queries

2.1.1 Basic Definitions

We need to introduce some basic notions in order to formalize the forthcoming

descriptions. First, we need to define our notion of a database.

In this context we assume that all objects are feature-transformed into points of a

vector space with a fixed, finite dimension d. This makes a database a set of points in

a d-dimensional data space DS, which in turn is a subset of ℜd. Analysis as well as

2 Related Work 13

the implementation are greatly simplified if the data space is restricted to the unit

hyper cube: DS = [0..1]d.

Our database is completely dynamic in a sense that insertions and deletions of points

are possible and should be handled efficiently. The number of points currently stored

in the database is abbreviated to n. Here we must mention that the term point is

ambiguous. Sometimes it stands for a point object, i.e. a point stored in the database,

in other situations we mean a point in the data space, i.e. a position which is not

necessarily stored in the database. An example for the latter case is the query point.

From the context, the meaning of the notion point will always be obvious.

Definition 1: Database

A database DB is a set of points in a d-dimensional data space DS,

DB = {P0, ..., Pn-1}

Pi ∈ DS, i = 0..n – 1

DS ⊆ ℜd.

In some applications, it is not possible to map objects into feature vectors, but there

exists some notion of similarity between objects that can be expressed as a metric

distance between the objects. These distances are then used for query evaluation.

Several index structures for such metric spaces have been proposed [CPZ 97, Yia

93, Chi 94, Uhl 91, Bri 95, BO 97]. Fully aware of this problem we restricted our

definition of database to vector spaces with finite dimension and therefore we will

not consider these approaches.

Neighborhood queries are based on the notion of the distance between two points P

and Q in the data space. Which distance metric is used depends on the application

that has to be supported. Certainly, the most common metric is the Euclidean metric

L2 defining the well-known Euclidean distance function emδ :

2

1

0

2)(),(∑
−

=

−=
d

i
iiem PQQPδ

2 Related Work 14

Other widely used Lp metrics are the Manhattan or city block metric L1 and the

maximum metric ∞L :

{ }iimm

d

i
iicm PQQPPQQP −=−= ∑

−

=

max),(,),(
1

0

δδ

Whereas queries using the L2 metric are (hyper-)sphere shaped, those using the

maximum or the Manhattan metric are hypercubes and rhomboids, respectively (cf.

Figure 7).

Figure 7: Query Shapes for Different Metrics.

Assigning weights w0, ..., wd – 1 to the dimensions to defines the weighted Euclidean

and the weighted Maximum metrics, which correspond to axis-parallel ellipsoids and

axis-parallel hyperrectangles:

{ }iiiwmm

d

i
iiiwem PQwQPPQwQP −⋅=−⋅= ∑

−

=

max),(,)(),(2

1

0

2 δδ

2.1.2 Trees

The data organizing index structures are based upon the principle of hierarchical

clustering of the data space, which makes them structural similar to the B+-tree

[BM 77, Com 79]. Data vectors are stored in data nodes in a way that spatially

adjacent vectors are likely to be in the same node. As each data vector is stored in

exactly one data node, there is no object duplication among the data nodes, except

for different objects with identical data vectors. The data nodes themselves are

organized in a hierarchical directory, where each directory node points to a set of

subtrees. Therefore, these subtrees either are data nodes or headed by a directory

node themselves. The directory nodes usually have different internal structure than

the data nodes. On top of the structure is one single directory node, which is called

2 Related Work 15

the root node. The root node is usually the only node that is allowed to be less than

minimally filled. Each query and update processing starts at this node. The tree

structures are all height balanced as all paths from the root to all data pages have the

same length. This length is called the height of the index and may only change after

an insert or delete operation. The length of the path from the root to a node is the

level of this node, with the root itself having level one.

Figure 8: Tree Structure.

High-dimensional access methods are primarily designed for secondary storage use.

Therefore, data nodes are stored in data pages with a capacity of Cmax,data, defining

the maximal number of data vectors that can be stored in one data page.

Analogously, the directory page capacity Cmax,dir represents an upper limit for the

number of subnodes referenced in each directory page. Originally Cmax,data and

Cmax,dir were chosen so that data and directory pages fitted exactly into one page of

the secondary storage. Nowadays, however, the size of a page on a disk is seen as a

hardware detail, which should be hidden from the programmer and user. But reading

larger consecutive blocks from a disk is still orders of magnitude faster than reading

smaller blocks at random positions. Therefore Cmax,data and Cmax,dir represent user-

defined logical page sizes for an artificial paging. Although interesting, the optimal

choice of these values will not be content of this work. Normally the logical page

size is constant. The X-tree and the XO-tree, however, allow nodes to span over

multiples of the basic page size. This is called the supernode concept and will be

discussed more thoroughly below.

As all the index structures presented are dynamic, i.e. they permit insert and delete

operations in O(log n) time, they allow nodes to be filled below their maximum

capacity Cmax. Nevertheless, they require all nodes except the root node, to be at least

2 Related Work 16

filled up to a minimal value. This threshold is called the minimum storage utilization

sumin, and usually is about 40% of Cmax.

As mentioned above, high-dimensional index structures cluster the data in order to

store spatially close objects into the same node, if possible. This is achieved by

assigning each page a certain region, which is a subset of the data space. This region

is called page region and can be of arbitrary shape, but is always completely

enclosed by the region of its parent node. Consequently, all objects stored in a

subtree are always contained in the page region of the root of this subtree. This

makes a page region a conservative approximation for the data objects and other

page regions stored in the corresponding subtree (cf. chapter 3). For most index

structures, the page regions may overlap, although this leads to performance losses

and therefore should be avoided or at least minimized, whenever possible. In query

processing, the page region is used to exclude branches of the tree from further

processing. For efficient query processing it is therefore essential that the test for

intersection with a query region and the computation of the distance to the query

region, in case of a nearest neighbor query, can be performed efficiently. For a more

thorough discussion of page regions refer to chapter 3.

2.1.3 Queries

Queries are by far the most important operations on index structures. Therefore

optimizing the query performance of a structure is an important design step. In order

to fulfill this task, we first have to investigate which types of queries are of relevance

in high-dimensional data spaces.

The exact match query is essential for all kinds of data spaces. It is defined as

follows: Given a query point q, determine if q is contained in the database or not.

Query processing starts at the root node that is loaded into the main memory. For all

page regions containing q, the function ExactMatchQuery is called recursively with

q and the address of the corresponding page as parameters. Since all index structures

presented here allow overlapping page regions, it is possible that several sons of the

current node have to be visited to determine the result of the exact match query. The

result is true if a data page is found with a point stored in it that matches the query

point.

2 Related Work 17

The point query is a generalization of the exact match query. It retrieves all points

from the database which have the identical coordinates as the query point. Therefore

an exact match query returns true if the cardinality of the result set of the

corresponding point query is greater than zero.

Definition 2: Point Query

For a given query point Q in the data space the point query retrieves the following set

from a database DB:

{ }QPDBPQDBQueryPo =∈=),(int

The pseudocode for a point query is shown in figure 9.

Another important query type is the range query, which returns a set of points

contained in the query range. This implies that the result set is of unknown size and

may even consist of the entire database. The algorithm presented here is formulated

independently from the applied metric (cf. section 2.1.1). As long as effective and

efficient tests for the two predicates IsPointInRange and RangeIntersectRegion are

provided, every metric is applicable, including such with weighted dimensions. With

this in mind, also partial range queries, i.e. queries where only a subset of the

attributes is specified, can be processed like normal range queries. Partial range

queries are then just regular range queries with the unspecified attributes weighted

Figure 9: Algorithm for Point Queries.

PointSet PointQuery(Point q, PageAdr pa)
{

int i;
PointSet result = EmptyPointSet;
Page p = LoadPage (pa);
if (IsDataPage (p))

for(i = 0; i < p.num_objects; i++)
if (q == p.object[i])

AddToPointSet(result, p.object[i]);
if (IsDirectroyPage (p))

for(i = 0; i < p.num_objects; i++)
if (IsPointInRegion(q, p.region[i]))

PointSetUnion(result, PointQuery(q, p.childpage[i]);
return result;

}

2 Related Work 18

zero. In addition, window queries can be expressed as range queries by using a

weighted Lmax metric.

Definition 3: Range Query

For a query object Q, a query range r, a metric M and a database DB, the Range

query retrieves the following set:

(){ }rQPDBPMrQDBQueryRange M ≤∈= ,),,,(δ

This definition shows that even point queries can be expressed as range queries by

setting the query range r zero.

A last very important query type in high-dimensional data spaces is the nearest

neighbor query and its generalization, the k-nearest neighbor query. This query type

overcomes a disadvantage of the range query and its special cases (point and window

query): the size of the result set is unknown. This makes it sometimes very hard for

the user to specify the query range. Consequently, the answer he gets is one of two

extremes: either he gets no answers at all or almost the entire database is returned as

result. Especially when the similarity of objects is the query criterion (‘Find the most

similar object to the query object.’), normally only the result set size is known but

not the range in which the results lie. Therefore, the nearest neighbor query and the

k-nearest neighbor query are introduced. A nearest neighbor query returns the closest

Figure 10: Algorithm for Range Queries.

PointSet RangeQuery(Point q, float r, Metric m, PageAdr pa)
{

int i;
PointSet result = EmptyPointSet;
Page p = LoadPage (pa);
if (IsDataPage (p))

for(i = 0; i < p.num_objects; i++)
if (IsPointInRange (q, p.object[i], r, m))

AddToPointSet(result, p.object[i]);
if (IsDirectroyPage (p))

for(i = 0; i < p.num_objects; i++)
if (RangeIntersectRegion(q, p.region[i], r, m)

PointSetUnion(result, RangeQuery(q, r, m, p.childpage[i]);
return result;

}

2 Related Work 19

object to the query object in the database with respect to a given distance metric. Of

course, it is possible that several objects have the same distance to the query object.

To resolve this tie situation we use non-determinism and choose an arbitrary point

from the set of all such closest points in our definition.

Definition 4: Nearest Neighbor Query

For a given query object Q and a given distance metric M, a nearest neighbor query

retrieves the following set from a database DB:

{ }),’(),(:’),,(QPQPDBPDBPSOMEMQDBNNQuery MM δδ ≤∈∀∈=

If not only the closest point is wanted but rather a natural number k of closest points,

the more general k-nearest neighbor query is used. This query retrieves the k closest

points to the query point from the database. Of course, the same problem with tie

situations arises and again the use non-determinism can be used to solve the problem.

Definition 5: k-Nearest Neighbor Query

For a given query object Q, a natural number k and a distance metric M, a k-nearest

neighbor query retrieves the following set from the database DB:

{ }








′>≤≤¬∃
∧∈′¬∃

∈= −
−),(),(:0,

\
),,,(10

10 QPQPkii

PPDBP
DBPPMkQDBkNNQuery

MiM

k
k δδ

�
�

From the two approaches to process nearest neighbor queries only the one published

by Hjaltason and Samet [HS 95] (‘HS algorithm’) will be described. The algorithm

presented by Roussopoulos, Kelley and Vincent [RKV 95] (‘RKV algorithm’) is

described in greater detail in [Böh 98]. A thorough comparison between the two is

presented there, too. It reveals that the HS algorithm is optimal in terms of page

accesses and is a lot easier to extend for k-nearest neighbor queries. Even ranking

queries, where the user is able to ask for the next closest objects after getting the

nearest neighbor, can easily be processed. It should not be omitted that the HS

algorithm has a worst-case space complexity of O(n) and therefore might not be

suitable for some applications. Nevertheless, it was chosen for the processing of

nearest neighbor queries in the sample implementation of the XO-tree.

2 Related Work 20

The HS algorithm accesses the pages of a tree in order of increasing distance to the

query point, starting at the root node. This requires that the algorithm is allowed to

jump between branches and levels of the tree. For this, an active page list (APL) is

maintained which stores the background storage address and the distance to the

query point of all active pages. A page is called active if its parent node has been

processed, but not the page itself. Since the parent of an active page has already been

loaded, the corresponding region of all active pages is known and their distance to

the query point can be determined. As only the distance between an active page and

the query point is needed, the representation of the page regions is not stored in the

APL. The APL is implemented as a priority queue with the distance to the query

point as sorting parameter. In the worst case, it contains entries for all pages of the

index. Therefore, an implementation of a priority queue, which is suitable for

secondary storage will normally be needed.

The algorithm in pseudocode is shown in figure 11. Obviously for k-nearest neighbor

queries there is a second priority queue with fixed length k needed to hold the closest

point candidate list. By storing the APL, it is easily possible to retrieve the next

closest objects in ranking queries.

Figure 11: HS-Algorithm for Nearest Neighbor Queries.

/* HS algorithm */
Point NearestNeighborQuery(Point q, Metric m, PageAdr root)
{

int i;
Element e = LoadPage(root);
PriorityQueue APL = new PriorityQueue();
Push(APL, e, dist(e, q, m));
while (IsNotEmpty(APL))
{

e = Pop(APL);
if (IsPoint(e))

return e;
if (IsDataPage(e))

for (i = 0; i < e.num_objects; i++)
Push(APL, e.object[i], dist(e.object[i], q, m));

else /* Element is a directory page */
for (i = 0; i < e.num_objects; i++)

Push(APL, e.childpage[i], dist(e.childpage[i], q, m));
}

}

2 Related Work 21

2.2 The R*-tree

The R*-tree [BKSS 90], a multidimensional index structure for rectangle and point

data, is the most successful variant of the R-tree [Gut 84].

Like the R-tree, the R*-tree uses axis parallel minimal bounding rectangles (MBR’s)

as page regions. But Beckmann, Kriegel, Schneider and Seeger carefully studied the

R-tree algorithms under various data distributions and then identified further

optimization objectives in addition to the optimization for small volume of the page

regions, which Guttman uses. They minimize the overlap between page regions as

well as their surface and the volume covered by internal nodes. At the same time,

maximal storage utilization is wanted. This is achieved by two major changes to the

R-tree insertion processes. First, the heuristic for choosing a suitable page for the

insertion of a new object is modified. Additionally the concept of forced reinserts is

introduced.

When an object is inserted into an R*-tree, one of three cases may occur on every

level of the tree during the search for a suitable page into which the object can be

inserted. If exactly one page region contains the object, the corresponding node of

this region is used.

Figure 12: Insert-Algorithm of the R*-tree.

PageAdr Insert(Point object, PageAdr pa)
{

Page p = LoadPage(pa);
PageAdr subtree;
PageAdr new_son;
PageAdr brother = NULL;
if (IsDataPage(p))

InsertObjectInPage(object, p);
if (Overflow(p))

brother = OverflowTreatment(p);
if (IsDirectoryPage(p))

subtree = ChooseSubtree(p, object);
new_son = Insert(object, subtree);

if (new_son)
InsertSonInPage(new_son, p);
if (Overflow(p))
brother = OverflowTreatment(p);

return brother;
}

2 Related Work 22

When several different pages contain the object, the one with the smallest volume is

chosen. The change compared to the R-tree is in the third case, when the object is not

Figure 13: ChooseSubtree-Algorithm of the R*-tree.

PageAdr ChooseSubtree(Page p, Point object)
{

int i;
PageAdr subtree;
float MINOverlEnl = INFINITY, MINVolEnl = INFINITY;
float MINVol = INFINITY;
float OverlEnl, VolEnl, Vol;
if (IsDataPage(p.childpage[0]))
{

/* Determine minimum overlap enlargement! */
for (i = 0; i < p.num_objects; i++)
{

OverlEnl = OverlapEnlarge(p.childnode[i], object);
VolEnl = VolumeEnlarge(p.childnode[i], object);
Vol = Volume(p.childnode[i]);
if ((OverlEnl < MINOverlEnl) || (OverlEnl == MINOverlEnl &&
VolEnl < MINVolEnl) || (OverlEnl == MINOverlEnl &&
VolEnl == MINVolEnl && Vol < MinVol))
{

MINOverlEnl = OverlapEnlarge(p.childnode[i], object);
MINVolEnl = VolumeEnlarge(p.childnode[i], object);
MINVol = Volume(p.childnode[i]);
subtree = p.childnode[i];

}
}

}
else
{

/* Determine minimum volume enlargement! */
for (i = 0; i < p.num_objects; i++)
{

VolEnl = VolumeEnlarge(p.childnode[i], object);
Vol = Volume(p.childnode[i]);
if ((VolEnl < MINVolEnl) || (VolEnl == MINVolEnl &&
Vol < MINVol))
{

MINVolEnl = VolumeEnlarge(p.childnode[i], object);
MINVol = Volume(p.childnode[i]);
subtree = p.childnode[i];

}
}
return subtree;

}
}

2 Related Work 23

contained in any page region. In this case, a page region has to be chosen, which

must be adapted afterwards. Here the R*-tree makes a distinction whether the child

node of the current node is a data or a directory page.

If it is a directory page, the region with the smallest volume enlargement is chosen.

In case of an ambiguity, the region with the smallest volume is taken.

If the child node is a data page, the region, which yields the smallest enlargement in

overlap, is chosen. Further criteria in tie situations are the enlargement in volume and

the volume itself. The algorithm shown in figure 13 implements these optimization

goals, although it does not explicitly distinguish between the three cases.

If a page overflow occurs during the insertion process, prior to a split a forced

reinsert takes place. This means that a defined percentage (usually 30%) of the

objects with the highest distance to the center of the region is deleted from the node

and the region is adapted. The deleted entries are then reinserted into the index. One

of the advantages of this behavior is that splits can often be avoided. Additionally,

the quality of the partitioning improves, as unfavorable decisions in the beginning of

the index construction can be corrected this way. Besides this, the average storage

utilization grows to a factor between 71% and 76%.

If necessary a two-phase split is performed. In the first phase, the split axis is chosen.

For this, the objects are sorted according to their lower bound and according to their

upper bound in every dimension. For each of these sortings, a number of

partitionings with controlled degree of asymmetry is observed. The surface area of

the MBR’s of all partitionings in one dimension is summed up and the dimension

Figure 14: Overflow Treatment of the R*-tree.

PageAdr OverflowTreatment(PageAdr pa)
{

PageAdr brother = NULL;
if (!IsRoot(pa) && IsFirstOverflow(Level(pa)))

ReInsert();
else

brother = Split(pa);
return brother;

}

2 Related Work 24

with the least sum is chosen as split axis. The pseudocode for this algorithm is

depicted in figure 15.

In the second phase, the split plane is determined. The main goal in this phase is the

minimization of the overlap between the page regions. In case of any ambiguities the

least coverage of dead space, i.e. data space with no objects in it, is used as criterion.

Again, only a limited number of partitionings, which are created analogously to those

in the first phase, is observed. For the pseudocode refer to figure 16.

The R*-tree was tested on various distributions of rectangle data. It showed

performance improvements between 10% and 75% over the R-tree. However,

Berchtold, Keim and Kriegel studied the R*-tree split algorithm in

higher-dimensional data spaces in [BKK 96]. They found that the algorithm leads to

deteriorated directories with a high overlap in high-dimensional data spaces, which

makes it necessary to load the entire index in order to process most queries.

Therefore, the R*-tree is not adequate for these data spaces.

Figure 15: Choice of the Split-Axis in the R*-tree.

int ChooseSplitAxis(Page p)
{

int i, splitaxis;
Sorting Low, High;
Distribution LowDistrib, HighDistrib;
float MINMarginSum = INFINITY;
float MarginSum;
/* determine splitaxis */
for (i = 0; i < dimension; i++)
{

Low = SortByLowerValue(p.childnode, i);
High = SortByHigherValue(p.childnode, i);
LowDistrib = ComputeDistributions(Low);
HighDistrib = ComputeDistributions(High);
MarginSum = MarginSum(LowDistrib, HighDistrib);
if (MarginSum < MINMarginSum)
{

MINMarginSum = MarginSum;
splitaxis = i;

}
}
return splitaxis;

}

2 Related Work 25

Figure 16: Split-Algorithm of the R*-tree.

PageAdr Split(PageAdr pa)
{

int i, splitaxis;
Page p = LoadPage(pa);
Sorting Low, High;
Distribution LowDistrib, HighDistrib;
float MINOverlap, MINVolume;
PageAdr new_brother;

/* determine splitaxis */
splitaxis = ChooseSplitAxis(p)

/* determine split index */
Low = SortByLowerValue(p.childnode, splitaxis);
High = SortByHigherValue(p.childnode, splitaxis);
LowDistrib = ComputeDistributions(Low);
HighDistrib = ComputeDistributions(High);
for (i = 0; i < NumberOfDistributions; i++)
{

if ((Overlap(HighDistrib[i]) < MINOverlap) ||
(Overlap(HighDistrib[i]) == MINOverlap &&
Volume(HighDistrib[i]) < MINVolume;
{

MINOverlap = Overlap(HighDistrib[i]);
MINVolume = Volume(HighDistrib[i]);
SplitDistrib = HighDistrib[i];

}
if ((Overlap(LowDistrib[i]) < MINOverlap) ||
(Overlap(LowDistrib[i]) == MINOverlap &&
Volume(LowDistrib[i]) < MINVolume;
{

MINOverlap = Overlap(LowDistrib[i]);
MINVolume = Volume(LowDistrib[i]);
SplitDistrib = LowDistrib[i];

}
}
new_brother = SplitAccordingTo(SplitDistrib);
return new_bother;

}

2 Related Work 26

2.3 The X-tree

As just mentioned, empirical studies [BKK 96, WJ 96] show deteriorated

performance for high-dimensional data in the R*-tree. This can not be explained

simply by a lower fanout but vastly depends on the fact that the overlap in the

directory increases rapidly with the dimension. Unlike in low-dimensional spaces,

the freedom of choice for a split axis is extremely limited. Often there is only one

split axis with the desired properties. If an index structure does not choose this axis,

it will produce high overlap between the MBR’s in a directory page, thus showing

massive performance losses in high-dimensional data spaces. Unfortunately, this split

axis might lead to an unbalanced partition of the data space. In these cases, it is

favorable not to split the node at all, to guarantee minimum storage utilization.

The X-tree [BKK 96] was specifically designed to avoid these problems. It extends

the R*-tree by the two concepts of an overlap-free split and the introduction of

so-called supernodes with an enlarged page capacity. The overlap-free (only

overlap-minimal for extended objects) split is based on a split-history. This

split-history is created if one records the history of all page splits in an R*-tree.

During the creation of an index, one starts for example with a data page A covering

almost the entire data space and inserts data into it. Eventually the page overflows

and is split into the two new pages A’ and B perpendicular dimension 2. Each of

those pages might be split again later on. This results in a binary tree similar to the

one depicted in figure 17.

Figure 17: Example of a split history.

2 Related Work 27

If it is now necessary to split the node containing A’’, B’’, C, D and E, we have to

choose a split axis first. If we would choose dimension 1, for example, we had to put

A’’ and E into one of the partitions. However, those two nodes have never been split

according to axis 1 and therefore span the whole data space along this axis.

Consequently, the MBR of this partition will also span the whole data space.

Regardless of the shape of the other partition, this leads to a high overlap and

deteriorates query performance. Only if we choose dimension 2 as split axis, an

overlap-free split can be determined, as every subnode has already been split

according to this dimension. The X-tree utilizes this observation by always using the

split dimension in the root node of the particular split tree. Obviously, it is possible

that this results in an unbalanced split, which would create one underfilled and one

almost overflowing node. As a result, the storage utilization would decrease and the

directory would degenerate. To overcome this problem, the X-tree does not split, but

creates an enlarged directory node instead – a supernode. Supernodes span multiple

disk blocks and the probability of their creation increases with the dimension of the

data space. To ensure efficient operation in lower-dimensional spaces, the X-tree

includes a geometric split algorithm, too. Therefore, the X-tree split algorithm

consists of at most three steps. First the R*-tree split algorithm or any other

topological split algorithm is applied. If this results in highly overlapping MBR’s, the

overlap-free split algorithm described above, is used. If this in turn leads to an

unbalanced directory, a supernode is created. Figure 18 shows the entire split

algorithm of the X-tree.

Apart from the split algorithm for directory pages, the X-tree uses the same insertion

process as the R*-tree. Especially the algorithm for choosing the appropriate subtree

for the insertion of a new object is not altered.

In medium-dimensional spaces, the X-tree performs orders of magnitude better than

the R*-tree for all query types. For smaller dimensions the behavior is almost

identical and in higher dimensions the X-tree, too, has to visit such a high number of

data pages that a linear scan is less expensive. It is impossible to give exact numbers

here, as a lot of factors influence the performance of an index structure.

2 Related Work 28

2.4 The SS-tree

The SS-tree [WJ 96] extends the R*-tree in a different direction than the X-tree. It no

longer uses hyperrectangles as page regions, but hyperspheres. To achieve better

efficiency, the spheres are not minimal bounding spheres. Instead, the centroid point,

i.e. the average value in each dimension, is used as a center point and the minimum

radius is chosen, such that all objects are included in the sphere. Therefore, the

region description consists of the centroid point and the radius. This allows a very

efficient determination of distances between page regions or query objects and page

regions.

The insertion algorithm is similar to the one for the R*-tree, but is adapted in every

major stage. The SS-tree uses the concept of a forced reinsert, too. Unlike in the

R*-tree, every object that is inserted is in the first step added to a reinsertion list,

which is emptied afterwards. During the descent in the index, the child node whose

Figure 18: Split-Algorithm of the X-tree.

bool XDirNodeSplit (MBRSet in, MBRSet out1, MBRSet out2)
{

MBRSet t1, t2;
MBR r1, r1;
/* first try a toplogical split */
TopologicalSplit(in, t1, t2);
r1 = CalculateMBR(t1);
r2 = CalculateMBR(t2);
if (Overlap(r1, r2) > MAX_OVERLAP)
{

/* try overlap-minimal split */
OverlapMinimalSplit(in, t1, t2);
if ((t1.num_of_MBRs < MIN_FANOUT) ||

(t2. num_of_MBRs < MIN_FANOUT)
/* create supernode*/
return FALSE;

}
out1 = t1;
out2 = t2;
return TRUE;

}

2 Related Work 29

centroid point is closest to the object is chosen for insertion. The volume of the page

regions or the amount of overlap enlargement is not considered at all. Of course, the

new centroid point and the new radius for each node on the insertion path must be

determined on the way down. When an overflow condition occurs, again a forced

reinsert operation is raised, where 30% of the objects with the highest variance from

the centroid point are deleted and reinserted after the page regions were updated. If a

split is necessary, the dimension with highest variance is chosen as split axis. By

examining all possible split positions, which fulfill the space utilization threshold, the

split plane is determined. The split plane with the minimal sum of variances on each

side is chosen. Again the amount of overlap that is produced, is in no way optimized.

This leads us to a main problem of the SS-tree. The fact that spheres are used as page

regions, makes it very hard to minimize the amount of overlap in the index. In fact,

an overlap-free split can be impossible in some situations. For this reason, the

SS-tree outperforms the R*-tree by a factor of two, but it does not reach the

performance of the X-tree.

2.5 The SR-tree

The SR-tree [KS 97] can be regarded as a combination of the R*-tree and the SS-tree,

as it uses the intersection between a hyperrectangle and hypersphere as page region.

The rectangular part is the axis parallel minimal bounding rectangle of all objects,

like in the R*-tree. The spherical part is the minimum sphere around the centroid

point of the stored objects, analogously to the SS-tree. This results in the most

complex description for page regions of all index structures presented here. It

consists of (2*d) floating point values for the MBR and (d+1) values for the sphere.

An example of the page regions of the SR-tree is shown in figure 19.

According to Katyama and Satoh [KS 97], a study of the properties of spheres and

rectangles provided the motivation for using this combination as page region. They

state that spheres are better suited for nearest neighbor queries and range queries, if

an L2-metric is used. This is because spheres tend to have a smaller diameter than

rectangles. On the other hand, rectangles have a much smaller volume than bounding

spheres. On the average the former are about 2% of the latter in their experiments.

This results in a much smaller overlap, whereas spheres usually overlap largely as

2 Related Work 30

described above. The authors therefore believe that a combination of the two will

overcome both problems.

Figure 19: Page Regions of the SR-tree.

The insert and split algorithms are taken from the SS-tree and only slightly modified.

Besides the necessity of updating the MBR after an insertion, the new bounding

sphere is calculated utilizing both the bounding sphere and the bounding rectangle of

the children, which results in smaller radius’s. However, no information from the

MBR’s is used for the choice of the subtree or the determination of the split.

The SR-tree uses the following definition of the distance between a query point q and

a region R:

Definition 6: Distance to the page region in the SR-tree

)).,(),.,(max(),(sphereRqDistMBRRqDistRqDist =

Unfortunately, this is not the minimal distance to the intersection solid, as explained

in section 3.7. The distance to the MBR as well as the distance to the sphere is

smaller than the true distance to the intersection solid. However, it can be shown that

the above function is a lower bound of the correct distance function. This guarantees

2 Related Work 31

that the processing of neither range queries nor nearest neighbor queries produces

false dismissals, but obviously some optimization potential is wasted in these cases.

The performance results presented in [KS 97] suggest that the SR-tree outperforms

the R*-tree as well as the SS-tree. It still remains an open question whether it also

outperforms the X-tree, as no experimental comparison has been made yet, to the

authors best knowledge. Comparing the performance of the two structures to the

performance of the R*-tree, one could conclude that the SR-tree does not reach the

performance of the X-tree, but this results are rather uncertain.

Another aspect of the SR-tree, however, is certain. As it uses such a complex

description of the page region, the fanout is massively decreased, which results in a

higher index. Therefore, the SR-tree needs even more directory page accesses than

the SS-tree.

2.6 The TV-tree

The TV-tree [LJF 95] was designed for real data with the

Karhunen-Loève-Transform in mind. This mapping, also known as principal

component analysis, preserves distances and eliminates linear correlation’s. The

resulting vectors have a high variance and therefore a good selectivity in the first few

dimensions. The last few dimensions, however, are of minor importance for the

query processing. This gives us two guiding principles for the use of

Karhunen-Loève-transformed data. First, branching according to the first few

attributes should be performed as early as possible, i.e. at the topmost levels of the

index. This has the effect that the extension of the regions in lower levels of the tree

is often zero in these dimensions. The second point is that it is not sensible to split

the data space in the dimensions corresponding with the last few attributes, as those

are never used for pruning branches during query processing.

Therefore, the TV-tree describes regions by using so-called Telescope Vectors (TV).

These vectors can be dynamically shortened and are divided into α active and k

inactive dimensions. The inactive dimensions form the greatest common prefix of all

vectors stored in the subtree. Consequently, the page regions have an extension of

zero in those dimensions. In the α active dimensions, however, the regions have the

shape of an Lp-sphere, with p being either 1, 2 or ∝. The region is assumed to have

infinite extension in the remaining dimensions, which are either active on lower

2 Related Work 32

levels of the index or of minor importance for the query processing. Figure 20 shows

a telescope vector and its main components.

Figure 20: Structure of a Telescope Vector.

Consequently, the region description consists of α floating point values for the center

point in the active dimensions and one float value for the radius. The values for the

inactive dimensions are stored at the level, where a dimension turns from active to

inactive, i.e. on higher levels of the tree. The number of active dimensions α is

constant on all levels to achieve a uniform capacity of directory nodes. Experiments

2 Related Work 33

show that a low number of active dimensions (α = 2) yields the best search

performance.

The choice of the appropriate subtree during the insert operation is based on the

following criteria (ordered by decreasing priority):

• minimum increase in the number of overlapping regions

• minimum decrease in the number of inactive dimensions

• minimum increase of the radius

• minimum distance to the center of the sphere

Again a reinsert operation, similar to the R*-tree, is performed prior to a split. The

split starts with choosing two seed-points (or seed-regions in case of a directory

page), which have the least common prefix. In tie situations, the maximum distance

is used as an additional criterion. Afterwards, the objects are inserted in one of the

new subtrees. The above criteria are used to determine the subtree, as long as the

minimum storage utilization is guaranteed.

The concept of the telescope vectors was introduced to increase the capacity and

therefore the fanout of directory pages. This makes it necessary that the data can be

Karhunen-Loève-transformed, i.e. their dimension can be ordered by their

significance. Also there must exist such feature vectors that allow the shift of active

dimensions. If these preconditions are satisfied, the authors report a good speed-up

compared to the R*-tree. Nevertheless, for uniform data and real data, which does

not conform to the conditions stated above, experiments [BKK 96] show that the

X-tree outperforms the TV-tree.

3 Regions 34

3 Regions
As stated above, data organizing index structures use page regions to partition the

data space and to approximate spatial objects. The form and representation of these

regions has great influence on the efficiency of an index structure. Therefore, we will

discuss such region descriptions more thoroughly now. After some general remarks,

a few of the common forms of page regions are discussed in detail.

3.1 The Purpose of Regions

The page regions of an index structure not only partition the data space. They also

provide a possibility to exclude portions of the tree from further query processing. As

all objects in a subtree are contained in the corresponding page region, subtrees

whose page regions do not contain the query point can be excluded from query

processing. Of course, this should be done on the lowest possible level of the tree, to

achieve maximum query performance.

However, regions fulfill another purpose: they are used to approximate spatial

objects. Spatial objects are often large in terms of memory needed to describe them

and even simple operations, e.g. a test for equality of two objects, are not always

trivial. This makes it necessary to approximate the objects in order to get a more

compact representation, which is easier to handle. Besides this, a smaller object

description allows it to store more objects in the nodes of a tree. This results in

smaller trees and improved query performance.

As the page regions of the lower levels of the tree are in fact spatial objects, page

regions are approximations even in index structures designed solely for point objects.

Therefore the terms page region and approximation are used synonymously from

now on.

3 Regions 35

3.2 Properties of Region Descriptions

To achieve these aims, the descriptions of page regions have to fulfill certain

properties.

3.2.1 Approximations

In order to maintain the correctness of the query algorithms, the distance between

two page regions must be a lower bound of the distance between the two closest

objects contained in those regions. Otherwise false dismissals may occur, for

example during the processing of a nearest neighbor query, because the pruning

heuristics depend on this. An approximation of an object that fulfills this property is

called conservative. On the other hand of course, the region should not contain too

much of dead space, i.e. data space covered by the page region, but not by any object

in the page region. Dead space does not affect the correctness of the query algorithms

but their efficiency. It generally leads to more overlap and prevents the early

exclusion of branches from the search process. Obviously, the optimization of the

dead space a region description produces must be done very carefully, to maintain a

conservative approximation.

As we have seen, the quality of an approximation depends on the amount of dead

space covered by it. To make this independent from the object size the following

definition is made.

Definition 7: Quality of an Approximation

The quality of an approximation A of the object O is defined as the volume of the

object divided by the volume of the approximation.

)(

)(
)(

Avolume

Ovolume
AQuality =

Obviously, this definition does assume approximations of spatial objects with a

volume greater than zero and is therefore only sensible on directory levels. The

necessity of a conservative approximation remains independent from this definition.

The use of approximations instead of the real objects produces some problems that

have to be addressed. One point is that if spatial objects are stored in the database, a

multi-step query processing must be used. As two different objects may have the

3 Regions 36

same approximation, they are both reported as answers to the query. A second

refinement step has to be performed after the query was processed. The first step is

therefore called filter step. Figure 21 shows the entire query process.

Figure 21: Multi-Step Query Process.

Of course, the complete query processing can only be efficient if a substantial

number of objects are excluded already in the filter step. Otherwise, the overall

processing time would be increased by the use of approximations. The meaning of

the word substantial in this context depends on the relation between the time needed

to process an approximation and the time needed for a real object. Obviously, a

better approximation usually allows the exclusion of more objects. The quality of the

approximation should therefore be maximized.

This leads to another problem in this context. Approximations of a better quality

usually have a more complicated description. Consequently, more memory is needed

to store one approximation, which in turn decreases the number of objects that can be

stored in one node. This increases the height of the index and, therefore, negatively

affects the query performance. This is contradictory to the reason why

approximations were introduced in the first place. Therefore, a balance between the

3 Regions 37

quality of the approximation and the memory needed to store its description must be

found.

3.2.2 Complexity of the operations

Another important point is the complexity of the operations that are needed for the

query processing. As we have seen in the previous chapter, a few operations have to

be defined for query regions in order to process the query types we identified earlier.

These are namely:

• A distance function between page regions and between page regions and query

objects.

• A test if an object is contained in a page region.

• A test if two page regions intersect.

In addition to this, functions depending on the specific index structure have to be

provided, e.g. the amount of overlap has to be determined during the insertion

process of the R*-tree and the X-tree. As all of these operations have to be performed

frequently during query processing, they should all be easy to evaluate for maximum

query performance. This is especially important for high-dimensional data spaces, as

the complexity of these operations is usually a function of the number of dimensions.

3.3 Minimal Bounding Rectangles

Minimal bounding rectangles (MBR’s) are defined by the maximal extension of the

contained objects in each dimension. MBR’s can either be axis parallel or of

arbitrary orientation (often called rotated bounding rectangles). For the latter, the

direction of the rectangle has to be stored, too. The additional degree of freedom

allows an approximation of better quality, but needs more storage space (at least

2*d+3 floating point values) and increases the complexity of the operations.

Consequently, Ablaßmeier found out that some basic operations take at least four

times as long for rotated bounding rectangles than for axis parallel ones [Abl 93].

Therefore, usually only axis parallel MBR’s are used, like in the R*-tree and the

X-tree. The term MBR will therefore stand for axis parallel minimal bounding

rectangle from now on.

3 Regions 38

For the encoding of a MBR 2*d (with d denoting the number of dimensions of the

data space) floating-point values are necessary. The determination of the distance to

a MBR is rather easy. The distance is calculated for each dimension separately and

summed up afterwards. Figure 22 shows the algorithm for the L2-metric. The tests

for containment and intersection are reduced to the test if the distance to the MBR is

zero or not. Even the calculation of the overlap is just a small extension of this

algorithm.

Compared to bounding spheres, MBRs have smaller volumes on the average, which

again helps to reduce the overlap. A side effect of the definition of a MBR is that

each hyperplane marking the boundary of the MBR contains at least one point of an

object in this page region. This makes it easy to determine the maximal distance of

the closest point inside the MBR to a query point. The RKV algorithm for nearest

neighbor queries takes advantage of this fact. Generally, this supports the efficiency

of any nearest neighbor algorithm.

MBR’s are used in for example in the R*-tree and the X-tree.

3.4 Polygons

Rectangles are quite well suited for page regions. The idea to further optimize them

by introducing more corners seems obvious. The resulting polygons should have less

Figure 22: Euclidean Distance to a MBR.

float DistToMBR(Point p, MBR m)
{

int i;
float d; /* distance in the current dimension */
float SquareSum; /* sum of the squares of d */
for (i = 0; i < dimension; i++)
{

if (p.coordinate[i] < m.min[i])
d = m.min[i] – p.coordinate[i];

else if (p.coordinate[i] > m.max[i])
d = p.coordinate[i] – m.max[i];

else d = 0;
SquareSum = SquareSum + d * d;

}
return sqrt(SquareSum);

}

3 Regions 39

volume and the quality of the approximation would therefore increase.

Unfortunately, this advantage is outweighed by a number of disadvantages the use

polygons brings with it.

First, the corners of the polygon must be stored. Depending on the number of corners

that are used, the amount of memory needed would be very large. For the convex

hull, the number of corners can not even be told in advance. In addition to this, it

may change from object to object. Nevertheless, no polygon can be described with as

little as 2*d floating point values, like a MBR. Therefore, the use of polygons would

result in a smaller capacity of the nodes and in higher indexes, with the known

decrease in performance.

The use of polygons also makes the basic algorithms more difficult. The

determination of a volume-optimized polygon is not as easy as finding the maximal

extension of the page region. On the other hand, giving up the goal of optimizing for

volume would also mean sacrificing the only advantage of using polygons. The

calculation of the distance to a polygon requires the determination of the vertex that

is closest to the query object. This can only be done by examining all corners of the

polygon. To determine the volume of the overlapping region of two polygons, the

resulting polygon has to be constructed and its volume must be computed. The

computation of a polygons volume in itself is far from trivial.

The performance of an index structure using polygons as page regions should

therefore not be as good as with MBR’s a page regions. This might be the reason

that, to the authors best knowledge, there exists no high-dimensional index structure

using polygons as page regions.

3.5 Spheres

Another very common form for page regions is the sphere. A sphere is completely

described by its center point and the radius, which makes only d+1 floating point

values necessary for the storage of the region. This makes it the most compact

description of all those presented in this chapter. Therefore, index structures using

spheres as page regions generally have the greatest node capacity of all.

Spheres have a small margin compared to their volume. Their high volume,

especially in higher dimensions, is one reason why index structures based on spheres

tend to suffer from a high overlap. Another reason for this is that an overlap-free split

3 Regions 40

is often not possible (cf. figure 23). Obviously, spheres are better suited for more

compact roundish data objects. If the objects that have to be approximated are rather

long and narrow, the bounding spheres will cover a lot of dead space, which again

has a negative affect on the query performance.

Figure 23: Situation where an Overlap-Free Split is impossible with Spheres.

The determination of distances and the tests for containment and intersection are

very easy and straightforward. Usually the center point of the sphere is chosen to be

the centroid of the objects to be contained. The coordinates xi of the centroid x (x1, ...,

xi, ..., xd) are calculated as follows:

∑

∑

=

=

∗
=

n

k
k

n

k
kik

i

wC

wCxC
x

1

1

.

..

where k is an index to the children of the node, i is an index to the dimensions, Ck.xi

denotes the i-th coordinate of the center of the k-th child and Ck.w denotes the

number of points contained in the subtree whose top is the child Ck. Both the SS-tree

and the SR-tree use this definition. Unfortunately, this only guarantees for an object

in the hemisphere directed to a query point, as depicted in figure 24. Therefore, the

minimal distance to a sphere is less expressive than the minimal distance to a MBR

for nearest neighbor queries. The performance for this query type can be affected

negatively by this.

3 Regions 41

Figure 24: Closest Point in a Sphere (Worst Case).

The overlapping volume of two spheres is comparatively hard to compute, as it has a

‘egg-like’ shape. This might be one reason why neither the SS-tree nor the SR-tree

optimizes for the amount of overlap an insertion of an object produces.

The SS-tree uses spheres as page regions, whereas the SR-tree uses them only as part

of a more complex model for page regions (cf. section 3.7).

3.6 Ellipsoids

For objects that have a longer and narrower shape, an ellipsoid seems to be an

appropriate approximation. If axis parallel ellipsoids are used, only d+2 floating-

point values are needed to store the page region. Otherwise the directions of the two

half-axis’ have to be stored, too.

A big problem with ellipsoids is the fact that all basic operations are rather

complicated to perform. Even the construction of the ellipsoid bears many problems

in it. As we have seen, an approximation should be optimized to have the least

volume. However, another degree of freedom is introduced with the second radius,

which complicates the optimization problem. The determination of distances and

overlapping volumes also result in difficult optimization problems, which can not be

solved efficiently.

Therefore, ellipsoids seem inappropriate as page regions and to the authors best

knowledge there exists no index structure that uses them.

3 Regions 42

3.7 Intersection of Sphere and Rectangle

The SR-tree uses a different method to improve the form of its page regions. It tries

to combine the advantages of rectangles and spheres by using the intersection of

these two figures. To store this page region, the MBR and the centroid plus its radius

are stored. This makes a total of 3*d+1 floating point values necessary, which makes

it the largest description of a page region of all index structures presented in this

thesis. The experimental results in [KS 97] show that this already leads to more

directory node accesses than an SS-tree or R*-tree need. This is still outweighed by

the substantial decrease in data node accesses. Nevertheless, it suggests that a even

larger description of a page region would result in a too high index, in the sense that

the performance gain of the better approximation is more than outweighed by the

performance loss due to the index height.

The basic algorithms for this kind of page regions are comparatively easy, as they are

the concatenation of the algorithms for rectangles and spheres. To test if a query

point is inside the region, it is tested if it is inside the sphere and inside the rectangle.

If both are true, the point is also inside the intersection. Although this test is more

complex than the single tests, its complexity is still of the same degree O(d) (with d

denoting the number of dimensions) as the single operations. The test for intersection

is again reduced to the question if the distance is zero or not.

The distance function proposed by Katayama and Satoh, however, is incorrect in

some constellations. As mentioned in the previous chapter, they define the distance

between a query point p and a page region R as follows:

)).,(),.,(max(),(sphereRqDistMBRRqDistRqDist =

Unfortunately, this is not correct for some query points, as depicted in figure 25. For

all query points P in the area A the correct distance would be the one from P to MT,

but the algorithm chooses either the one to MS or MR. Obviously, these distances are

both lower boundaries of the true distance, which ensures that no false dismissals

occur during the processing of range or nearest neighbor queries. The max-function

in the definition even ensures that the error is minimized. The error that is made can

even be calculated, as the following lemma shows.

3 Regions 43

Figure 25: Incorrect Euclidean Distance in the SR-tree.

Lemma 1: Relative Error of the SR-tree Distance Function

The relative error of the SR-tree distance function is:

{ }SRX

TRR

X

T

XT MMMwith
MMPM

PM

PM

PMPM
,1

22
∈

+
−=

−

Proof:

Without loss of generality, we assume the situation depicted in figure 25. The

relative error of the SR-tree distance function can then be calculated as follows:

{ }SRX

TRR

X

T

XT

TRR

XTRR

T

XT

TRRT

MMMwith
MMPM

PM

PM

PMPM

MMPM

PMMMPM

PM

PMPM

MMPMPM

,1
22

22

22

22

∈
+

−=−⇒

+

−+
=

−
⇒

+=

�

3 Regions 44

As we have seen the use of this distance function does not endanger the correctness

of the queries algorithms, but some optimization potential is wasted. Still the

experimental results in [KS 97] show that this approximation is an improvement over

the use of rectangles or spheres solely.

3.8 Summary

In this chapter, we have seen that page regions are used to group the objects in a

node, to prune branches during query processing and to approximate spatial objects.

As page regions themselves are spatial objects, their grouping on higher levels of the

index is an approximation, too. The terms page region and approximation can

therefore be used synonymously in this context.

MBR’s and spheres are most common types of shapes for page regions in index

structures. Nevertheless, they have particular disadvantages, which can be overcome

by combining these two concepts.

4 The XO-Tree 45

4 The XO-Tree
Based on the facts presented in the previous two chapters, we will now introduce a

new index structure for high-dimensional data spaces: The XO-tree. After clearly

defining our goals, the structure of the XO-tree will be presented. In particular, the

new type of page region that this index structure uses will be thoroughly discussed.

In the following section, the algorithms used by the XO-tree will be explained.

4.1 Design Objectives

We already recognized that special index structures are needed for high-dimensional

data spaces. The main problems in this area are the high overlap in the directory of

the index and the size of the data objects in terms of memory that is needed to store

them. To minimize these problems there are two parts of an index structure where

special care has to be taken during the design process. These two parts are the

insertion process and the choice of the page region that is used.

4.1.1 The Insertion Process

The insertion process is extremely important for the query performance of an index

structure. To achieve a well-balanced index with as little overlap as possible, there

are again two major points that have to be examined.

First, the decision into which subtree an object is inserted has to be made very

carefully. Although forced reinserts can make up for some of the mistakes made

during this phase, a good choice of the subtree is essential for the quality of the

index. As Berchtold, Keim and Kriegel showed in [BKK 96], the heuristics that are

applied should optimize the amount of overlap, the insertion of the object produces.

This seems to be the most important point for the optimal choice of the subtree.

4 The XO-Tree 46

Properties like the volume of the resulting page region or its margin, on the other

hand, are of minor importance.

The split heuristic is the other significant characteristic of the insertion process. The

result of a split should be well balanced to prevent a deteriorated index. On the other

hand, a well balanced but highly overlapping split result is equally undesirable.

Therefore, if an overlap-minimal split results in an unbalanced situation, a split

should be avoided at all. In these cases, a linear scan of the associated subtree is

more efficient. Therefore, an index structure should be as hierarchical as possible and

as linear as necessary. This can be achieved by the application of the supernode

concept, as introduce with the X-tree.

4.1.2 The Page Region

Finally, the form of the page region has an influence on the performance of an index

structure. In the previous chapter, we saw that a balance between the quality of the

approximation and the complexity of its description has to be found. The results of

the experiments with the SR-tree show that a considerable performance gain can be

achieved by the use of a combination of sphere and rectangle. The main advantage of

this form of the page region is the reduction of dead space. Especially the corners of

the MBR are often cut off by the bounding sphere. This effect gets even more

important in higher dimensions, as the number of corners of a MBR grows

exponentially with the dimension. However, the great size of the description uses up

some of the performance gained by the increased quality of the approximation. This

shows in the high number of directory node accesses that the SR-tree makes

compared to the SS-tree. Obviously, the goal must be, to reduce the dead space and

at the same time increase the size of the region description as little as possible.

4.2 The Page Region of the XO-tree

To achieve the goals stated in the previous section, the XO-tree uses new forms of

page regions. The common objective is to cut off the corners of a rectangle as far as

they cover only dead space. Obviously, there are several ways, how to cut off corners

of a rectangle, which contain no objects. One would be the combination of rectangle

and sphere as used by the SR-tree. But as we have seen above, this results in higher

indexes, because the storage of the approximation needs a lot of memory. To avoid

4 The XO-Tree 47

this unwanted effect, three different approaches were implemented and tested for the

XO-tree. They will be described in detail now. If nothing else is mentioned, the letter

d denotes the number of the dimensions of the data space in this chapter.

4.2.1 Ovaloids

At first, we will observe ovaloids. Ovaloids can be viewed as rectangles with round

corners. They are always associated with a “inner” rectangle, which is the rectangle

mentioned in the following definition:

Definition 8: Ovaloid

The ovaloid OR,r that is associated with the rectangle R, is the geometric location of

all points that have an Euclidean distance of at most r from R.

Figure 26 shows an ovaloid in two-dimensional space. As one can see from the

definition, there are not only the corners excluded from the rectangle. In three and

higher dimensions even entire edges, i.e. (d-2)-dimensional objects, are excluded

from the rectangle. This further reduces the dead space that is covered by the

approximation. On the other hand, the radius of the ovaloid is zero, if an object that

has to be enclosed, resides on such an edge. In these cases, the ovaloid is identical

with a MBR of the data.

Figure 26: Two-Dimensional Ovaloid.

Obviously, there are 2*d+1 floating point values needed to store an ovaloid. This

makes its description almost as small as the one for a rectangle. Consequently, nearly

4 The XO-Tree 48

the same number of entries as in an X-tree node, can be stored in the nodes of an

index that uses ovaloids as page regions. This is considerably more than in the nodes

of a SR-tree.

The basic operations can be evaluated rather easy, apart from the exact calculation of

the overlap between two ovaloids. The distance between an object and an ovaloid

can be defined utilizing the distance between the associated rectangle and the object:

Definition 9: Distance between an object and an ovaloid

The distance between an object O and an ovaloid OVR,r is defined as follows:

rROdistOVOdist rR −=),(),(,

The distance between two ovaloids is determined analogously, by calculating the

distance between the two associated rectangles and subtracting the two radiuses.

There are no special cases where these functions do not yield the correct Euclidean

distance to the page region, as there are for the page region of the SR-tree. This is an

obvious advantage of an ovaloid over the intersection between rectangle and sphere.

Figure 27: Test for Containment of an Ovaloid.

To test if a point is inside an ovaloid, the distance to the associated rectangle is

calculated. If this distance is less than the radius, the point resides inside the ovaloid.

The test for containment of another ovaloid is bit more complicated. Lets us assume

that we want to test if ovaloid OR1,r1 is fully contained in ovaloid OR2,r2. For this, the

maximal minimal distance between the two associated rectangles R1 and R2 has to

be calculated. To this value, r1 has to be added. If the result is less than r2, OR1,r1 is

completely enclosed by OR2,r2. Figure 27 shows the situation for 2-dimensional

4 The XO-Tree 49

ovaloids, whereas figure 28 depicts the pseudocode for the calculation of the

maximal minimal distance between two MBR’s.

Only the overlap of two ovaloids is hard to calculate. The objects that are formed

from the intersection of two ovaloids are very complex. Nevertheless, there is an

obvious upper boundary for this value. It is the overlap of the MBRs of the two

ovaloids. These MBRs can easily be determined by adding the radius of the ovaloid

to the absolute value of the coordinates of the inner rectangle. This way an upper

boundary of the true overlap can be determined efficiently. The difference between

this value and the true amount of overlap can be ignored. The use of another page

region, like the one of the SR-tree, would result in a similar error, as the calculation

of the true overlap would not be less difficult.

Figure 28: Maximal minimal Distance of two MBR’s.

float MaximalDistanceOfMBRs(Ovaloid O1, Ovaloid O2);
{

/* calculate the squared maximal distance of the associated MBRs of
O1 and O2 */
int k;
/* total squared distance and distance in current dimension */
float square_dist = 0.0, d;
for (k = 0; k < dimension; k++)
{

if (((O1.max[k] + O1.radius) > (O2.max[k] + O2.radius)) ||
 ((O1.min[k] – O1.radius) < (O2.min[k] – O2.radius)))

return false;
if (O1.max[k] <= O2.max[k])

if (O1.min[k] < O2.min[k])
d = O2.min[k] – O1.min[k];

else
d = 0.0;

else
if (O1.min[k] > O1.min[k])

d = O1.max[k] – O2.max[k];
else if (abs(O1.max[k] – O2.max[k]) >

abs(O2.min[k] - O1.min[k]))
d = O1.max[k] – O2.max[k];

else
d = O2.min[k] - O1.min[k];

square_dist = square_dist + d * d;
}
return square_dist;

}

4 The XO-Tree 50

In summary, one can say that the use of ovaloids permits a compact description of a

page region with little dead space covered by it. The basic operations can easily be

implemented and evaluated efficiently. Therefore, ovaloids fulfill the requirements

for page regions, which we defined in section 4.1.2.

4.2.2 Intersection between Ovaloid and MBR

Another promising approach is to use the intersection between the MBR of the data

and an ovaloid as page region. This technique also allows reducing the dead space

covered by the corners of the MBR. However, as we already saw with the SR-tree,

storing two independent approximations is undesirable, because of the high

complexity in space. The combination of an ovaloid and a MBR has advantages here.

As each ovaloid is associated with a rectangle anyway, it is straightforward to use a

rectangle that can easily be derived from the MBR as basis for the ovaloid. This way

the space complexity of the approximation can be reduced significantly. The use of

the MBR itself would be senseless for obvious reasons.

We use the following approach to derive the basic rectangle for the ovaloid from the

MBR. First, the dimension dse, in which the MBR has the smallest extension, is

determined. Half of this extension is then subtracted from the absolute coordinates of

the points defining the MBR. The resulting rectangle, which has zero extension in

dimension dse, is used as the basis for the ovaloid. The radius of the ovaloid is chosen

appropriately to enclose all objects in the MBR. Again, the shape of this

approximation is in extreme cases identical with that of the MBR. In the optimal

case, the radius equals half the extension in dimension dse. An even smaller radius is

not possible, as not all of the (d-1)-dimensional hyperrectangles defining the MBR

would be touched by the ovaloid. However, as we have seen in chapter 3.3, each of

these hyperrectangles contains at least one data point.

In order to permit efficient access to the ovaloid, the dimension with the smallest

extension is also stored. Therefore, (2*d+1) floating-point values plus one integer

value are needed to store this type of page region. Although this is more than for a

single ovaloid, there is still a considerable advantage over the approximation used by

the SR-tree.

All the basic operations are built on the operations on the single rectangles and

ovaloids. This makes the implementation and evaluation simple and still efficient.

4 The XO-Tree 51

The test for containment of an object is the straightforward combination of the two

basic tests. Obviously, the same problem with the evaluation of the overlap as with

the exclusive use of ovaloids comes up here, too. It is again solved by using the

overlap of the MBRs as an upper boundary for the true value, but here the MBR does

not have to be calculated, as it is already stored. This simple building process for the

basic operations leads to a similar distance function like the one for the SR-tree:

Definition 10: Distance to the page region for the intersection of MBR and

ovaloid

The distance between a point q and a page region R is defined as:

)).,(),.,(max(),(ovaloidRqDistMBRRqDistRqDist =

This distance function obviously has the same properties as the one used with the

SR-tree. This includes the erroneous distance value that is calculated in certain

situations. Fully aware of all the disadvantages this type of page region posses, it was

implemented and tested as part of the XO-tree, to evaluate the effect of these factors

on the performance of the index structure.

4.2.3 The “Corner-cut” Approximation

We developed another type of page region that reduces the dead space covered by

the corners of the MBR for the data. We call it the corner-cut approximation as it

looks like an MBR whose corners were cut off with a knife. It is based on a MBR

like the ovaloid. However, here the MBR is not inside the page region it is associated

with, but it surrounds the page region. Apart from the MBR, the corner-cut

approximation uses one additional floating-point value r. The approximation is then

constructed from the MBR by the following process:

In each corner of a d-dimensional MBR, d points are created by subtracting r from

the absolute value of the i-th (}1,,0{ −∈ di �) coordinate of the corner. All other

coordinates are the same as the ones of the corresponding corner. These new points

replace the corner from which they were created. Obviously, these points define a

(d-1)-dimensional cutting plane between the MBR and the corner-cut approximation.

Figures 29 and 30 show some examples for two and three dimensions.

4 The XO-Tree 52

Figure 29: Corner-Cut Approximation (2D).

Of course, the value r has to be chosen appropriately so that all objects enclosed by

the MBR are also enclosed by the corner-cut approximation. In the worst case this

means that r has to be zero and the corner-cut approximation is then identical with

the MBR. To store a corner-cut approximation, (2*d+1) floating-point values are

needed. This is exactly the same as for an ovaloid is needed.

Figure 30: Corner-Cut Approximation (3D).

The reason why the corner-cut approximation was introduced, was that this type of

approximation is very robust concerning rounding errors. The other two

approximation types, on the other hand, lost some quality if a page region had to be

adapted several times. As several tests showed, the reason for this effect is

cumulating rounding errors in the calculation process.

4 The XO-Tree 53

Let us now examine the basic operations for the corner-cut approximation. There

exists an easy and efficient method to determine whether a point is inside the page

region. Two things are important for this. First, if the point is outside the MBR, it is

also outside the corner-cut approximation. If this is not the case, then the point can

only be outside the page region if its L1-distance to its closest corner is less than the

“radius” r. This test can be performed by examining all of the coordinates of the

point once. Therefore, it has a worst case time complexity of O(d) with d again

denoting the number of dimensions of the data space. The pseudocode for the

algorithm is presented in figure 31. To determine if a page region is completely

enclosed in the another one, an analogous test is performed which has the same

complexity.

As with ovaloids, the calculation of the overlap of two page regions is difficult due to

the many different and complex objects that can result from the intersection of those

page regions. Consequently, we use the overlap of the MBRs of those page regions

as an upper boundary for the true value. As the MBRs are stored as part of the

corner-cut approximation, they can be accessed very efficiently.

Figure 31: Test, if a point is inside a corner-cut approximation.

bool contains (Point p, Corner_Cut cca)
{

int k; // index for the loop
float L1_dist = 0.0; /* L1-distance of the point to the corner */
for (k = 0; k < p.dimension; k++)
{

if ((p.coord[k] > cca.max[k]) || (p.coord[k] < cca.min[k]))
{

return false;
}
if (p.coord[k] – cca.min[k] < (cca.max[k] – cca.min[k]) / 2)

L1_dist = L1_dist + p.coord[k] - cca.min[k];
else

L1_dist = L1_dist + cca.max[k] – p.coord[k];
}
if (L1_dist >= cca.r)

return true;
else

return false;
}

4 The XO-Tree 54

To determine the Euclidean distance of a point to a corner-cut approximation the

distance to the corresponding MBR is calculated. In certain situations this does not

yield the correct distance value. The calculation of the correct distance in these

situations would be very time consuming, as one would have to drop a perpendicular

on a (d-1)-dimensional hypersurface. To avoid this costly operation, the distance to

the MBR is used, which represents a lower boundary for the true value. This way, no

false dismissals can occur during nearest-neighbor queries.

4.3 The Structure of the XO-tree

The structure of the XO-tree is similar to that of the X-tree. Especially the concept of

supernodes and the overlap-minimal split are inherited from the X-tree. The data

structures mainly differ in two aspects. First, of course, the XO-tree uses a different

page region. The second point is that it allows supernodes on the level of data nodes,

too. This is not the case for the X-tree. Obviously, this is only of importance for

spatial data objects, as an overlap-free split is always possible for point data.

A data node contains entries consisting of a pointer to an actual data object and of its

approximation. The entries in a directory node consist of a pointer to a subnode, its

approximation and splithistory. The splithistory is implemented as a bitfield with d

entries. In addition to this, every node stores the number of logical disk blocks it

occupies. If a node uses more than one logical block, it is called a supernode. Except

for the root node, every node is at least filled to some predefined degree. The

capacity for one block of a data or directory node differs due to the different size of

their entries. The maximal number of entries in a node depends on the number of

blocks, this node occupies, but is always a multiple of the basic block capacity.

4 The XO-Tree 55

4.4 Algorithms of the XO-tree

We will now examine the dynamic features of the XO-tree. The insertion process

will be thoroughly discussed, followed by some considerations about the deletion of

objects. A look at the query algorithms of the XO-tree closes this section.

4.4.1 Insert

As we mentioned in section 4.1.1, the insertion algorithm should be optimized to

produce as little overlap as possible. The XO-tree’s insertion algorithm is therefore

based on the algorithm of the X-tree. Nevertheless, is has undergone significant

changes.

The basic structure is still the same. Starting with the root node, an appropriate

subtree is chosen into which the object has to be inserted. This is repeated until a data

node is reached. The object is then inserted into this node. If this yields an overflow,

the node is either split or a supernode in created or extended. No reinsert mechanism

is integrated as it is the case for the R*-tree and SR-tree. The pseudocode for this

algorithm is shown in figure 32.

Figure 32: Insert-Algorithm of the XO-tree.

PageAdr Insert(Point object, PageAdr pa)
{

Page p = LoadPage(pa);
PageAdr subtree;
PageAdr new_son;
PageAdr brother = NULL;
if (IsDataPage(p))

InsertObjectInPage(object, p);
if (Overflow(p))

brother = OverflowTreatment(p);
if (IsDirectoryPage(p))

subtree = ChooseSubtree(p, object);
new_son = Insert(object, subtree);
if (new_son)

InsertSonInPage(new_son, p);
if (Overflow(p))

brother = OverflowTreatment(p);
return brother;

}

4 The XO-Tree 56

The first change to the insertion process takes place in the algorithm for the choice of

the subtree. As we mentioned in chapter 2, the X-tree uses the same algorithm as the

R*-tree for this task. This algorithm, which is shown in figure 13, has different

optimization goals for data and directory nodes, if the object does not reside in any

page region so that one has to be adapted. If the subtrees of the current node are data

nodes, the subtree with the smallest enlargement in overlap is chosen. In cases of

ambiguity, the enlargement in volume and the volume itself are further criteria. If, on

the other hand, the subnodes are directory nodes, a different strategy is applied. Here

the one, which yields the least enlargement in volume and in case of doubt, the one

with the smallest volume, is chosen. This distinction between the two node types

provides a slightly better performance for 2D rectangles, as stated in [BKSS 90].

Nevertheless, this obviously disagrees with the goals mentioned in section 4.1. As we

want to minimize the overlap in the directory, this should be reflected in the

Figure 33: ChooseSubtree-Algorithm for the XO-tree.

PageAdr ChooseSubtree(Page p, Point object)
{

int i;
PageAdr subtree;
float MINOverlEnl = INFINITY, MINVolEnl = INFINITY;
float MINVol = INFINITY;
float OverlEnl, VolEnl, Vol;
/* Determine minimum overlap enlargement! */
for (i = 0; i < p.num_objects; i++)
{

OverlEnl = OverlapEnlarge(p.childnode[i], object);
VolEnl = VolumeEnlarge(p.childnode[i], object);
Vol = Volume(p.childnode[i]);
if ((OverlEnl < MINOverlEnl) || (OverlEnl == MINOverlEnl &&
VolEnl < MINVolEnl) || (OverlEnl == MINOverlEnl &&
VolEnl == MINVolEnl && Vol < MinVol))
{

MINOverlEnl = OverlapEnlarge(p.childnode[i], object);
MINVolEnl = VolumeEnlarge(p.childnode[i], object);
MINVol = Volume(p.childnode[i]);
subtree = p.childnode[i];

}
}
return subtree;

}

4 The XO-Tree 57

algorithm for the choice of the subtree. Therefore, the first criterion for the choice of

the subtree should be the minimal enlargement in overlap, regardless of the type of

the subnodes. Consequently, the XO-tree does not distinguish between data and

directory nodes during this decision. Instead, it uses the minimal enlargement in

overlap and in case of a tie, the minimal enlargement in volume and the volume itself

as criteria for the decision. This should result in less overlap in the index and

therefore a better query performance. The entire algorithm for the choice of the

appropriate subtree is shown in figure 33.

As the XO-tree does not use reinserts to avoid splits, an overflow of a node leads

either to a split or the creation of a supernode. First, a topological split is determined.

If the overlap of the resulting nodes exceeds a certain threshold (usually 40% of the

combined volume), an overlap-minimal split is determined. If this, in turn, yields an

unbalanced split, the current node is extended by one logical disk block and therefore

becomes a supernode. Supernodes are also split if this is possible within the above

mentioned borders. For supernodes, however, the likelihood for a successful split is

smaller than for ordinary nodes, as they were created because of their already high

overlap between their entries. Nevertheless, they have to be split, if possible, to

achieve an index structure that is as hierarchical as possible. Of course, the split of a

supernode usually results in the creation of another supernode.

The topological split that is determined in the first stage of the split algorithm, is

taken over from the X-tree and R*-tree respectively, but any split algorithm that

minimizes the overlap between the two resulting nodes could be used. The algorithm

can be divided into two phases, where in the first phase, the split axis is chosen and

in the second one, the split plane is determined. To find the global optimum for the

distribution of the elements into two nodes, would require an algorithm with

exponential time complexity. This is unacceptable for any real world application.

Therefore, an approximation of the optimal result is determined, using the following

method. First, the entries of the node are sorted according to the lowest and

according to the highest value of their approximation along each axis. Afterwards,

for each of these sorting, (M-2m+2) distributions, where M denotes the maximal

number of entries in the current node and m denotes the minimal number of entries in

a node, are created. Obviously, M and m vary depending on the number of blocks a

node occupies. We choose m to be 40% of M. The k-th distribution

)})22(,,1{(+−∈ mMk � is described as follows: The first group contains the first

4 The XO-Tree 58

(m-1)+k entries, whereas the second group contains the remaining elements of the

sorting. For each of these distributions, the sum of the margins of the approximations

is calculated. The axis with the smallest sum of all the margin values of its

distributions is chosen as split axis. To determine the best distribution along the split

axis, the entries are again sorted along the split axis according to their lowest and

highest value. Again the same number of distributions is determined and the one,

which yields the smallest overlap between the two groups, is chosen. Afterwards, the

node is split according to this distribution. The algorithms are shown in figure 15 and

16 (chapter 2).

An overlap-minimal split is determined, if the overlap of the topological split

exceeds a threshold. The algorithm was taken over from the X-tree. It has the

topological split algorithm as a basis. First, the potential split axes are determined.

They are the axes according to which all subnodes of the current node have already

been split and can be identified by examining the split-histories of those subnodes.

Afterwards a topological split is performed, which only considers the potential

overlap-minimal split axes. Of course, the minimal number of entries in a node m is

now one. Otherwise, the overlap-minimal split would not test any distribution that

has not been already considered by the topological split algorithm. This way the

overlap-minimal split is found, which may be an unbalanced split. A split is

considered unbalanced, if one node is less than 40% filled.

If an overlap-minimal split results in an unbalanced situation, the node is not split,

but extended by one disk block. This way, a normal node gets a supernode. Of

course, the disk blocks a supernode occupies, should be successive ones on the

secondary storage. Otherwise, the intended effect that the node can be linearly

scanned, is not achieved. Therefore, an implementation of the XO-tree has to ensure

this either by pre-allocating empty disk blocks or by moving the node onto an area of

sufficient size.

4 The XO-Tree 59

4.4.2 Delete

The delete algorithm of the XO-tree is very straightforward and simple. First, a point

query with the object that has to be deleted is performed to identify the data node that

contains this object. Afterwards the object is deleted from this node and the

approximation of the node is adapted. If the deletion of the object causes an

underflow for the data node, all entries from that node are distributed among its

brothers. This may in turn cause overflows of the brother nodes, which are treated as

in the insertion algorithm. The deletion of a node may lead to the underflow of its

father node, if the father node is an ordinary directors node. If the father is a

Figure 34: Overlap-minimal split algorithm.

PageAdr OverlapMinimalSplit(PageAdr pa)
{

uint i, k; // dimension and distribution indexes
bitvector split_vector; // contains the intersection of all split histories
uint num_axis = 0; // number of potential split axes
uint axis[dimension]; // potential split axes
Page p = LoadPage(pa);
Distribution CurrentDistribution, BestDistribution;
PageAdr new_brother;
split_vector = p.childnode[0].splithistory;
for (i = 1; i < p.num_objects; i++)

split_vector = split_vector & p.childnode[i].splithistory;

for (i = 0; i < dimension; i++)
{

if ((split_vector[i] = TRUE)
axis[num_axis] = i;
num_axis = num_axis + 1;

}
for (k = 0; k < num_axis; k++)
{

CurrentDistribution = TopologicalSplitAccordingAxis(axis[k], pa);
if (Overlap(CurrentDistribution) < MinOverlap)

MinOverlap = Overlap(CurrentDistribution);
BestDistribution = CurrentDistribution;

}
new_brother = SplitAccordingTo(BestDistribution);
return new_bother;

}

4 The XO-Tree 60

supernode, it may be shortened by one block and even become an ordinary directory

node. If the last but one element of the root is deleted, the root can be entirely deleted

and the remaining entry is included in the union of the nodes on the former second

level. If this happens, the tree shrinks by one level. Figure 35 shows a simplified

version of the algorithm, where the part that operates on data nodes is omitted.

Figure 35: Delete-Algorithm of the XO-tree.

bool Delete(PageAdr pa, Point object)
{

int i;
bool underflow;
Page p = LoadPage(pa);
/* choose the subtree from which the object has to be removed */
 for (i = 0; i < p.num_objects; i++)
{

if (IsPointInRegion(object, p.region[i]))
underflow = Delete(p.childpage[i], object);

}
if (underflow)
{

/* if son underflowed: delete son node and redistribute its entries */
p.RemoveEntry(i);
p.num_objects = p.num_objects – 1;
DistributeEntries(i);
/* check for underflow in current node */
if (p.num_objects < MIN_FANOUT)

return TRUE;
}
return FALSE;

}

4 The XO-Tree 61

4.4.3 Update

Analogously to the delete algorithm, the update algorithm performs a point query for

the object to determine the data node that contains it. If the updated object is still

inside the page region of its node, the values are changed and the algorithm

terminates. Otherwise, the object is deleted from the node and it is tested if the object

is inside the page region of the father node. If so, it is inserted into the appropriate

node, using the insertion algorithm. This process may continue along the insertion

path up to the root. The algorithm is depicted in figure 36. Again, a simplified

version is shown, which omits the part that operates on data pages.

Figure 36: Update-Algorithm of the XO-tree.

bool Update(PageAdr pa, Point object)
{

int i;
bool ok;
Page p = LoadPage(pa);
/* choose the subtree to update the object */
 for (i = 0; i < p.num_objects; i++)
{

if (IsPointInRegion(object, p.region[i]))
ok = Update(p.childpage[i], object);

}
if (!ok)
{

/* check if object is inside of this nodes page region */
if (IsPointInRegion(object, p.PageRegion))

Insert(object, pa);
else

return FALSE;
}
return TRUE;

}

5 Experimental Results 62

5 Experimental Results
To verify the practical relevance of the XO-tree, it was implemented and tested with

artificial and real data. These tests also provided information about the properties of

the three different forms for page regions the XO-tree can use.

5.1 Experimental Setup

For the tests, the XO-tree was implemented in C++ with the use of templates. This

ensured that an easy change of the approximation type that is used, was possible.

Besides, different types of data could be handled. The X-tree implementation was

adapted to also use the HS-algorithm for nearest neighbor queries. This was

necessary, as the original X-tree implementation uses the RKV-algorithm for this

query type. Unfortunately, the available implementation of the SR-tree could not be

adapted in this way. Therefore, a direct comparisons between the SR-tree and the

XO-tree was impossible.

All tests were performed on HP-C160 with at least 256Mbytes of RAM. The

implementation of the XO-tree as well as the implementation of the X-tree allow

point queries, range queries, nearest neighbor and k-nearest neighbor queries. The

following test data was used:

• Artificial uniformly distributed point data of various dimensions (2, 3, 5, 10, 15,

20, 25, 30). Each of these data sets contained 10,000 points.

• 20-dimensional real point data from a astronomical database. This data set

contained 100,000 points.

5 Experimental Results 63

For all tests, the block size of the index structures was fixed at 4096 bytes. There was

no caching mechanism, which would influence the performance measurements,

implemented.

The performance of both index structures was tested with all the query types that

were supported. For each query type the artificial as well as the real data was used

for the tests. Each value presented is the average value of 1000 queries with different

query points but otherwise identical parameters.

5.2 Results

5.2.1 Point Query

Figure 37 and figure 38 show the number of pages accessed during the processing of

point queries for the uniformly distributed data. Figure 37 shows the results for

successful queries, whereas figure 38 depicts the results for unsuccessful queries.

Figure 37: Point Queries – successful (Artificial Data).

5 Experimental Results 64

Figure 38: Point Queries – unsuccessful (Artificial Data).

For up to five dimensions, the performance of all XO-tree variants and of the X-tree

is almost identical. However, for higher dimensions, all three XO-tree variants need

fewer page accesses than the X-tree. The performance gain of the XO-tree variants

gets even larger with growing dimension. The reason for this is the high overlap in

the X-tree directory for high-dimensional data. This explanation is supported by

figure 39, which shows the number of directory page accesses for point queries.

Obviously, the overlap in the X-tree directory leads to many directory page accesses.

5 Experimental Results 65

Figure 39: Point Query – Directory Page Accesses (Artificial Data).

On the other hand, the number of page accesses is almost identical with the height of

the index for the XO-tree. As a result, the XO-tree in all its variants is up to 5.7 times

faster than the X-tree for point queries, as can be seen in figure 40.

Figure 40: Point Query – Speed-Up (Artificial Data).

5 Experimental Results 66

For the real data the speed-up factors that are shown in figure 41 are still more than

two.

Figure 41: Point Query – Speed-Up (Real Data).

5.2.2 Range Query

In a second series of experiments, the performance of the index structures were

measured using range queries. In figure 42, the number of page accesses for the

artificial data and various dimensions is shown. Obviously, the XO-tree with the

intersection of the ovaloid and the MBR as page region shows the worst performance

in this situation. On the other hand, the XO-trees with ovaloids and corner-cut

approximation as page regions outperform the X-tree. Again this performance gain

gets larger with the number of dimensions of the data space.

5 Experimental Results 67

Figure 42: Range Query (Artificial Data).

The speed-up factors for this query type are depicted in figure 43. A factor of 2.5 is

reached for 30-dimensional uniformly distributed data points.

Figure 43: Range Query – Speed-Up (Artificial Data).

For the real data set, the number of page accesses for different query radiuses are

shown in figure 44. Again the XO-tree with the intersection of an ovaloid and a

5 Experimental Results 68

MBR as page region shows the worst performance. The other two XO-tree variants

again outperform the X-tree. With growing query radius, the difference between the

XO-tree and X-tree diminishes. This is not surprising, as the answer set contains

more points for larger radiuses. As at least all data pages containing the points in the

answer set and the directory pages on the paths to those nodes have to be read, the

possibility for performance optimizations are reduced in the same amount as the size

of the answer set increases.

Figure 44: Range Query (Real Data).

5.2.3 Nearest Neighbor Query

As mentioned earlier, nearest neighbor queries are important in the context of

similarity search systems. Therefore, the performance of the XO-tree and the X-tree

was compared for this query type, too. The tests with the uniformly distributed point

sets showed interesting results. If the query points were also stored in the database,

the XO-tree variant, which uses the intersection between an ovaloid and a MBR as

page region, needs considerably more page accesses than all the other structures.

Nevertheless, the remaining two XO-tree variants outperform the X-tree. In fact, the

number of page accesses that are needed to find the nearest neighbor to a query

point, is similar to the number needed for a point query. This is true for the X-tree,

5 Experimental Results 69

too. Consequently, the XO-tree is up to 3.5 times faster than the X-tree in these

situations. Figure 45 shows this results.

Figure 45: Nearest Neighbor Query 1 (Artificial Data).

If the query points were not stored in the database, different results are obtained. In

this case, all the tested index structures show a similar performance, as depicted in

figure 46. In data spaces with dimensions up to 20, the XO-tree variants with the

corner-cut approximation or ovaloids as page regions are up to 30% faster than the

X-tree. In even higher dimensional data spaces, the X-tree need fewer page accesses.

This is again due to the fact, that the entire index has to be read, which gives the

X-tree with its smaller directory an advantage.

5 Experimental Results 70

Figure 46: Nearest Neighbor Query 2 (Artificial Data).

For the real data, the fact that the query point was stored in the database, had no

effect on the performance. As figure 47 shows, the XO-tree variant that uses the

intersection of an ovaloid and a MBR as page region needed again more page

accesses than the other XO-tree variants.

Figure 47: Nearest Neighbor Query 1 (Real Data).

5 Experimental Results 71

Nevertheless, the other two XO-tree variants outperform the X-tree by a factor of

two, as depicted in figure 48.

Figure 48: Nearest Neighbor Query 2 (Real Data).

5.2.4 K-nearest Neighbor Query

Finally, tests with k-nearest neighbor queries were made. Figure 49 shows the

number of page accesses that were necessary to process a k-nearest neighbor query,

which returns an answer set that has a size of 0.05% of the database size. Obviously,

the results are similar to those for the nearest neighbor queries with query points that

were not stored in the database. Again, the X-tree had advantages in data spaces with

more than 20 dimensions due to its smaller index. In data spaces with lower

dimensionality, all XO-tree variants needed less page accesses than the X-tree.

5 Experimental Results 72

Figure 49: K-Nearest Neighbor Query (Artificial Data).

For the real data set, the results are presented in figure 50. The two XO-tree variants,

which use ovaloids or the corner-cut approximation as page regions, need about 30%

fewer page accesses than the X-tree. The intersection variant of the XO-tree,

however, shows almost the same performance as the X-tree. Of course, the number

of page accesses increases with the size of the answer set.

Figure 50: K-Nearest Neighbor Query (Real Data).

5 Experimental Results 73

Figure 51: CPU Times (Real Data).

Finally, figure 51 shows the CPU times needed to process the k-nearest neighbor

queries for the real data. A comparison with the previous figure reveals that the

higher complexity for the basic operations in the XO-tree does not affect the query

processing time significantly.

5.3 Summary

The performance of the XO-tree with all its variants was tested thoroughly and

compared with the results of the X-tree. It turned out that the XO-tree variant, which

uses the intersection between an ovaloid and a MBR as page region, shows bad

performance for (k)-nearest neighbor queries and range queries. This supports the

considerations about this form of page regions as presented in section 4.2.2. The

other two XO-tree variants, on the other hand, usually outperform the X-tree for all

query types. Only in cases where the entire directory is read, the X-tree performs

better than the XO-tree. In these cases, however, a hierarchical index is always

inferior to the linear scan due to the overhead of accessing the directory pages.

Therefore, the use of an index is unjustified in these cases anyway.

Of the two XO-tree variants that outperform the X-tree, the one that uses the

corner-cut approximation as page region, usually showed a moderately better

5 Experimental Results 74

performance. Surprisingly, the error in the distance calculation of this approximation

type did not affect its performance negatively.

6 Conclusion and Future Work 75

6 Conclusion and Future Work

6.1 Conclusion

As we saw in chapter one, many applications like CAD, multimedia, molecular

biology and time sequence analysis require high-dimensional indexing techniques.

For the similarity search, the objects are transformed into points in a

high-dimensional vector space using a feature transformation. Those vectors can only

be managed efficiently with the use of multidimensional index structures.

In chapter two, we introduced and discussed several of such index structures. This

were the R*-tree, the X-tree, the SS-tree, the SR-tree and the TV-tree. Their

important properties were described and the advantages and disadvantages of each

structure were examined. The type of page region that is used in an index structure as

well as the optimization of the overlap in the index were identified as important

factors for the performance of an index structure in high-dimensional data spaces.

Different forms of page regions and their properties were discussed in the third

chapter. The page region in an index structure should minimize the dead space, i.e.

the area covered by the page region but not by any object inside the page region, in

order to minimize the overlap in the directory. During this optimization process, two

major properties of the page region have to be watched closely. First, the size of the

description of the page region should be minimized. Otherwise, the height of the

directory deteriorates and the performance of the index structure suffers. The second

important point is the complexity of the basic operations for the page region. Those

basic operations are used by the query processing algorithms and must therefore be

executed efficiently to yield a good query performance.

6 Conclusion and Future Work 76

Based on the results of the previous chapters, the XO-tree was developed in chapter

four. As basis for this new index structure, the X-tree was chosen. Three new forms

of page regions were introduced with the ovaloid, the intersection of an ovaloid and a

minimal bounding rectangle and the corner-cut approximation. All of those page

regions were designed to minimize the dead space, while keeping an eye on the

complexity of the description and of the basic operations. The insertion algorithm

was modified to optimally support the aim of minimizing the overlap in the

directory.

Experiments with artificial and real data showed that the XO-tree outperforms the

X-tree for almost every query type. The speed-up over the X-tree usually yields a

factor of about two. The experiments also showed that the intersection of an ovaloid

and an axis-parallel minimal bounding box does not yield the desired performance

for similarity queries. The ovaloid and the corner-cut approximation, on the other

hand, yield equally good performance for every query type. The use of these forms

of page regions allows efficient indexing of high-dimensional data spaces, especially

in the range between ten and twenty dimensions.

6.2 Future Work

Due to problems with the available implementation of the SR-tree, a comparison

between the SR-tree and the XO-tree could not be made. However, as the SR-tree

represents a similar approach as the XO-tree, such a comparison would be

interesting. Therefore, this should be done after solving the problems with the

different implementations. A comparison with a bulk-loading variant of the X-tree

might also be of interest.

The topological split algorithm of the XO-tree is inherited from the R*-tree. Here

may be some room for optimization left, if special properties of high-dimensional

vector spaces are considered.

Finally, the practical applicability of the XO-tree must be examined closely. Current

commercial database systems are extended from the pure relational system towards

so-called object-relational systems. This opens up the possibility to integrate new

index structures, like the XO-tree, into those systems.

Appendix 77

Appendix

Appendix 78

A List of Figures

FIGURE 1: SECTION CODING.. 3

FIGURE 2: RECTANGULAR COVER OF AN OBJECT [JAG 91]. ... 4

FIGURE 3: TWO SIMILAR IMAGES AND CORRESPONDING 112-D COLOR HISTOGRAMS [SEI 97]................ 5

FIGURE 4: TWO DOCKING PROTEINS [SEI 97]... 6

FIGURE 5: DAX PERFORMANCE INDEX (SOURCE: FRANKFURT STOCK EXCHANGE). 7

FIGURE 6: MULTI-STEP QUERY PROCESSING OF SIMILARITY QUERIES. .. 10

FIGURE 7: QUERY SHAPES FOR DIFFERENT METRICS.. 14

FIGURE 8: TREE STRUCTURE... 15

FIGURE 9: ALGORITHM FOR POINT QUERIES. .. 17

FIGURE 10: ALGORITHM FOR RANGE QUERIES.. 18

FIGURE 11: HS-ALGORITHM FOR NEAREST NEIGHBOR QUERIES. ... 20

FIGURE 12: INSERT-ALGORITHM OF THE R*-TREE. .. 21

FIGURE 13: CHOOSESUBTREE-ALGORITHM OF THE R*-TREE... 22

FIGURE 14: OVERFLOW TREATMENT OF THE R*-TREE... 23

FIGURE 15: CHOICE OF THE SPLIT-AXIS IN THE R*-TREE... 24

FIGURE 16: SPLIT-ALGORITHM OF THE R*-TREE. .. 25

FIGURE 17: EXAMPLE OF A SPLIT HISTORY. ... 26

FIGURE 18: SPLIT-ALGORITHM OF THE X-TREE... 28

FIGURE 19: PAGE REGIONS OF THE SR-TREE... 30

FIGURE 20: STRUCTURE OF A TELESCOPE VECTOR. .. 32

FIGURE 21: MULTI-STEP QUERY PROCESS.. 36

FIGURE 22: EUCLIDEAN DISTANCE TO A MBR.. 38

FIGURE 23: SITUATION WHERE AN OVERLAP-FREE SPLIT IS IMPOSSIBLE WITH SPHERES. 40

FIGURE 24: CLOSEST POINT IN A SPHERE (WORST CASE). .. 41

FIGURE 25: INCORRECT EUCLIDEAN DISTANCE IN THE SR-TREE. ... 43

FIGURE 26: TWO-DIMENSIONAL OVALOID.. 47

FIGURE 27: TEST FOR CONTAINMENT OF AN OVALOID. .. 48

FIGURE 28: MAXIMAL MINIMAL DISTANCE OF TWO MBR’S. .. 49

FIGURE 29: CORNER-CUT APPROXIMATION (2D).. 52

FIGURE 30: CORNER-CUT APPROXIMATION (3D).. 52

FIGURE 31: TEST, IF A POINT IS INSIDE A CORNER-CUT APPROXIMATION... 53

FIGURE 32: INSERT-ALGORITHM OF THE XO-TREE. .. 55

FIGURE 33: CHOOSESUBTREE-ALGORITHM FOR THE XO-TREE... 56

FIGURE 34: OVERLAP-MINIMAL SPLIT ALGORITHM. .. 59

FIGURE 35: DELETE-ALGORITHM OF THE XO-TREE. ... 60

FIGURE 36: UPDATE-ALGORITHM OF THE XO-TREE. .. 61

FIGURE 37: POINT QUERIES – SUCCESSFUL (ARTIFICIAL DATA). .. 63

Appendix 79

FIGURE 38: POINT QUERIES – UNSUCCESSFUL (ARTIFICIAL DATA)... 64

FIGURE 39: POINT QUERY – DIRECTORY PAGE ACCESSES (ARTIFICIAL DATA). 65

FIGURE 40: POINT QUERY – SPEED-UP (ARTIFICIAL DATA). .. 65

FIGURE 41: POINT QUERY – SPEED-UP (REAL DATA)... 66

FIGURE 42: RANGE QUERY (ARTIFICIAL DATA).. 67

FIGURE 43: RANGE QUERY – SPEED-UP (ARTIFICIAL DATA).. 67

FIGURE 44: RANGE QUERY (REAL DATA). .. 68

FIGURE 45: NEAREST NEIGHBOR QUERY 1 (ARTIFICIAL DATA). .. 69

FIGURE 46: NEAREST NEIGHBOR QUERY 2 (ARTIFICIAL DATA). .. 70

FIGURE 47: NEAREST NEIGHBOR QUERY 1 (REAL DATA)... 70

FIGURE 48: NEAREST NEIGHBOR QUERY 2 (REAL DATA)... 71

FIGURE 49: K-NEAREST NEIGHBOR QUERY (ARTIFICIAL DATA). ... 72

FIGURE 50: K-NEAREST NEIGHBOR QUERY (REAL DATA).. 72

FIGURE 51: CPU TIMES (REAL DATA). ... 73

Appendix 80

B List of Definitions

DEFINITION 1: DATABASE... 13

DEFINITION 2: POINT QUERY .. 17

DEFINITION 3: RANGE QUERY... 18

DEFINITION 4: NEAREST NEIGHBOR QUERY ... 19

DEFINITION 5: K-NEAREST NEIGHBOR QUERY.. 19

DEFINITION 6: DISTANCE TO THE PAGE REGION IN THE SR-TREE .. 30

DEFINITION 7: QUALITY OF AN APPROXIMATION.. 35

DEFINITION 8: OVALOID ... 47

DEFINITION 9: DISTANCE BETWEEN AN OBJECT AND AN OVALOID .. 48

DEFINITION 10: DISTANCE TO THE PAGE REGION FOR THE INTERSECTION OF MBR AND OVALOID 51

Appendix 81

C Reference

 [Abl 93] Ablaßmeier K.: ‘Erweiterung eines geometrischen Anfrageprozessors
um approximationsbasierte Anfragen und Operationen’, Master
Thesis (in German), Technische Universität München, 1993.

[AFS 93] Agrawal R., Faloutsos C., Swami A.: ‘Effecient Similarity Search In
Sequence Databases’, Proc. 4th Int. Conf. on Foundations of Data
Organization and Algorithms, 1993, LNCS 730, pp. 69-84.

[ALSS 95] Agrawal R., Lin K., Shawney H., Shim K.: ‘Fast Similarity Search in
the Presence of Noise, Scaling , and Translation in Time-Series
Databases’, Proc. of the 21st Conf. on Very Large Databases (VLDB),
1995, pp. 490-501.

[Ben 75] Bentley J. L.: ‘Multidimensional Search Trees Used for Associative
Searching’, Communications of the ACM, Vol. 18, No. 9, 1975, pp.
509-517.

[Ben 79] Bentley J. L.: ‘Multidimensional Binary Search in Database
Applications’, IEEE Trans. Software Eng. 4(5), 1979, pp. 397-409.

[Ber 97] Berchtold S.: ‘Geometry based search of similar parts’, (in german),
Ph.D. thesis, University of Munich, 1997.

[BKK 96] Berchtold S., Keim D., Kriegel H.-P.: ‘The X-tree: an Index Structure
for High-Dimensional Data’, Proc. of the 22nd VLDB Conf., Bombay,
India, 1996, pp.28-39.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: ‘The R*-tree:
An Efficient and Robust Access Method for Points and Rectangles’,
Proc. ACM SIGMOD Int. Conf. on Managment of Data, Atlantic
City, NY, 1990, pp. 322-331.

[BM 77] Bayer R., McCreight E. M.: ‘Organization and Maintenance of Large
Ordered Indices’, Acta Informatica 1(3), 1977, pp. 173-189.

[Böh 98] Böhm C.: ‘Efficiently Indexing High-Dimensional Data Spaces’,
Ph.D. Thesis, University of Munich, 1998.

[BO 97] Bozkaya T., Ozsoyoglu M.: ‘Distance-Based Indexing for High-
Dimensional Metric Spaces’, Proc. 1997 ACM SIGMOD In. Conf. on
Management of Data, Tucson, AZ, 1997.

[Bri 95] Brin S.: ‘Near Neighbor Search in Large Metric Spaces’, Proc. 21st

VLDB Conference, 1995, pp. 574-584.

[Chi 94] Chiueh T.: ‘Content-Based Image Indexing’, Proc. 20th VLDB
Conference, 1994, pp. 582-593.

[Com 79] Comer D.: ‘The Ubiquitous B-tree’, ACM Computing Surveys 11(2),
1979, pp.121-138.

[CPZ 97] Ciaccia P., Patella M., Zezula P.: ‘M-tree: An Efficient Access Method
for Similarity Search in Metric Spaces’, Proc. 23rd Int. Conf. on Very
Large Databases (VLDB ´97), Athens, Greece, 1997.

Appendix 82

[FBFH 94] Faloutsos C., Barber R., Flickner M., Hafner J., et al.: ‘Efficient and
Effective Querying by Image Content’, Journal of Intelligent
Information Systems, 1994, Vol. 3, pp. 231-262.

[Fre 87] Freeston M.: ‘The BANG file: A new kind of grid file’, Proc. ACM
SIGMOD Int. Conf on Management of Data, San Francisco, CA,
1987, pp. 260-269.

[FRM 94] Faloutsos C., Ranganathan M, Manolopoulos Y.: ‘Fast Subsequence
Matching in Time-Series Databases’, Proc. ACM SIGMOD Int Conf.
on Management of Data, San Francisco, CA, 1987.

[GM 93] Gary J. E., Mehrotra R.: ‘Similar Shape Retrieval using a Structural
Feature Index’, Information Systems, Vol. 18, No. 7, 1993, pp.
525-537.

[Gut 84] Guttman A.: 'R-trees: a dynamic index structure for spatial
searching', Proc. ACM SIGMOD Int. Conf. on Managment of Data,
Boston, MA, 1984, pp. 47-57.

[Hin 85] Hinrichs K.: ‘Implementation of the Grid File: Design Concepts and
Experience’, BIT 25, pp. 569-592.

[HS 95] Hjaltson G. R., Samet H.: ‘Ranking in Spatial Databases’, Proc. of the
4th Symposium on Spatial Databases, Portland, ME, 1995, pp.83-95.

[HSW 88a] Hutflesz A., Six H.-W., Widmayer P.: ‘Globally Order Preserving
Multidimensional Linear Hashing’, Proc. 4th IEEE Int. Conf. on Data
Engineering, 1988, pp. 572-579.

[HSW 88b] Hutflesz A., Six H.-W., Widmayer P.: ‘Twin Grid Files: Space
Optimizing Access Schemes’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1988.

[Jag 91] Jagadish H. V.: ‘A Retrieval Technique for Similar Shapes’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, pp. 208-217.

[Kei 97] Keim D. A.: ‘Efficient Similarity Search in Spatial Database Systems’,
Habilitation thesis, Institute for Computer Science, University of
Munich, 1997.

[KKS 98] Kastenmüller G., Kriegel H.-P., Seidl T.: ‘Similarity Search in 3D
Protein Databases’, Proc. German Conference on Bioinformatics
(GCB’98), Köln (Cologne), 1998.

[KS 86] Kriegel H.-P., Seeger B.: ‘Multidimensional Order Preserving Linear
Hashing with Partial Extensions’, Proc. Int. Conf. on Database
Theory, in: Lecture Notes in Computer Science, Vol. 243, Springer,
1986.

[KS 87] Kriegel H.-P., Seeger B.: ‘Multidimensional Dynamic Quantile
Hashing is very Efficient for Non-Uniform Record Distributions’,
Proc. 3rd Int. Conf. on Data Engineering, 1987, pp. 10-17.

[KS 88] Kriegel H.-P., Seeger B.: ‘PLOP-Hashing: A Grid File Without
Directory’, Proc. 4th Int. Conf. on Data Engineering, 1988, pp. 369-
376.

Appendix 83

[KS 97] Katayama N., Satoh S.: ‘The SR-tree: An Index Structure for High-
Dimensional Nearest Neighbor Queries’, Proc. ACM SIGMOD Int.
Conf. on Managment of Data, Tucson, AZ, 1997.

[KW 85] Krishnamurthy R., Whang K.-Y.: ‘Multilevel Grid Files’, IBM
Research Center Report, Yorktown heights, N.Y., 1985.

[LJF 95] Lin K., Jagadish H. V., Faloutsos C.: ‘The TV-Tree: An Index
Structure for High-Dimensional Data’, VLDB Journal, Vol. 3, 1995,
pp. 517-542.

[MG 93] Mehrotra R., Gary J. E.: ‘Feature-Based Retrieval of Similar Shapes’,
Proc. 9th Int. Conf. on Data Engeneering, 1993.

[NHS 84] Nievergelt J., Hinterberger H., Sevcik K. C.: ‘The Grid File: An
Adaptable, Symmetric Multikey File Structure’, ACM Trans. on
Database Systems, Vol. 9, No. 1, 1984, pp. 38-71.

[Oto 84] Otoo E.J.: ‘A Mapping Function for the Directory of a
Multidimensional Extendible Hashing’, Proc. 10th Int. Conf. on Very
Large Data Bases, 1984, pp. 493-506.

[Ouk 85] Ouksel M.: ‘The Interpolation Based Grid File’, Proc. 4th ACM
SIGACT/SIGMOD Symp. on Principles of Database Systems, 1985,
pp. 20-27.

[RKV 95] Roussopoulos N., Kelley S., Vincent F.: ‘Nearest Neighbor Queries’,
Proc. ACM SIGMOD Int. Conf. on Management of Data, San Jose,
CA, 1995, pp.71-79.

[Sei 97] Seidl T.: ‘Adaptable Similarity Search in 3-D Spatial Database
Systems’, Ph.D thesis, University of Munich, 1997.

[SK 97] Seidl T., Kriegel H.-P.: ‘Efficient User-Adaptable Similarity Search in
Large Multimedia Databases’, Proc. 23rd Int. Conf. on Very Large
Databases (VLDB’97), Athens, Greece, 1997, pp. 506-601.

[TC 91] Taubin G., Cooper D. B.: ‘Recognition and Positioning of Rigid
Objects Using Algebraic Moment Invariants’, Geometric Methods in
Computer Vision, Vol. 1570, SPIE, 1991, pp. 175-186.

[Uhl 91] Uhlmann J.K.: ‘Satisfying General Proximity/Similarity Queries with
Metric Trees’, Information Processing Letters, Vol. 40, 1991, pp.175-
179.

[WJ 96] White D.A., Jain R.: ‘Similarity Indexing with the SS-tree’, Proc. of
the 12th Int. Conf. on Data Engineering, New Orleans, LO, 1996,
pp.516-523.

[Yia 93] Yiannilos P.N.: ‘Data Structures and Algorithms for Nearest
Neighbor Search in General Metric Spaces’. ACM-SIAM Symp. on
Discrete Algorithms, 1993, pp.311-321.

