infinity : A Generic Platform for Application Development
and Information Sharing on Mobile Devices

Alvin Cheung, Tyrone Grandison, Christopher Johnson

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

{alvin, tyroneg, johnsocm}@us.ibm.com

ABSTRACT

Personal mobile devices, such as cell phones and PDAs, are under-
going continual improvements in computing power, storage, and
connectivity. This trend presents many opportunities for informa-
tion sharing and collaboration among massively distributed data
sources. However, the current mobile environment, which consists
of incompatible operating systems, development models, and com-
munication options, has hindered application development and data
sharing over ad hoc networks of mobile devices. In this paper, we
present a middleware framework, called Tnﬁ'ni‘ty, that unifies tech-
niques for local (and remote) device data access, automatic com-
munication channel selection, and application deployment across
heterogeneous platforms. Infinity enables information sharing and
collaboration among mobile devices in a privacy-preserving man-
ner. We describe the prototype implementation of Infinity and
demonstrate how it eases application development and supports a
wide variety of application scenarios.

Categories and Subject Descriptors

D.2.11 [Software Architectures]: Domain-specific architectures

General Terms

Design, Management

Keywords

Mobile Middleware, Information Sharing, Collaboration, Privacy
Preservation

1. INTRODUCTION

Mobile data sources have become truly ubiquitous. Cell phones
and PDAs feature rapidly growing storage capacities. These de-
vices no longer contain only addresses and phone numbers, but also
pictures, music, and various other personal data. In addition, they
offer a wealth of connectivity options, such as GPRS, WLAN, and

*Research was done while author was with IBM Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiDE’07, June 10, 2007, Beijing, China.

Copyright 2007 ACM 978-1-59593-765-0/07/0006 ...$5.00.

*
Stefan Schénauer
University of Helsinki
PO Box 68, 00014 Helsinki, Finland
schoenauer@acm.org

Bluetooth. The increasing amount of data stored on these devices
presents great opportunities for information sharing. For example,
medical institutions would like to access patient health information
generated by pervasive monitoring devices for treatment and re-
search purposes, automobile guidance systems would benefit from
more accurate and up-to-date information about traffic congestion,
and rescue workers would like the ability to search current infor-
mation about potential victims at a disaster site. Each of these
scenarios requires the exchange and analysis of recent, location-
dependent information. However, there are many obstacles to the
seamless sharing of information stored on mobile devices, includ-
ing: (1) heterogeneity of data formats, (2) differences in communi-
cation means and protocols, and (3) privacy concerns of data sub-
jects.

Application development is also difficult in these mobile ad hoc
networks. Because mobile devices use various operating and stor-
age systems, application developers must accommodate many dif-
ferent platforms to enable widespread data sharing. This also com-
plicates deployment of applications, since every user must install a
system-dependent application for his or her own device.

To overcome these challenges, we propose a middleware plat-
form, called Infinity, that facilitates application development for
data sharing and distributed query applications on mobile devices.
Infinity translates among various data formats, automatically choo-
ses appropriate communication channels, enables privacy-preser-
ving query processing and data sharing across multiple devices, and
provides a device-independent means to share and deploy applica-
tions.

1.1 Example Scenarios

To illustrate the utility of Infinity, we describe three example sce-
narios involving application development and information sharing
in ad hoc networks of mobile devices.

Evacuation Routing Suppose that an enterprise would like to
provide its employees with a service on their mobile devices to fa-
cilitate evacuation routing in case of an emergency. The employees
could install a simple application on their cell phones or PDAs that
contains a map of the building in which the employee is situated,
including the locations of available exits. The evacuation applica-
tion could query other local devices to determine the location and
concentration of evacuees in each exit area to allow employees to
bypass congested areas. The aggregate query results returned to
each mobile device would provide current and reliable information
about the status of evacuation, allowing each employee to find the
most expedient route out of the building. The company or its em-
ployees could also send the evacuation routing application, and cur-
rent mapping information, to new or non-resident employees upon
entering the building.

Recommendation Service A second application of Infinity is
to support recommendation services for restaurants, automobile re-
pair shops, and other service-oriented businesses. Similar recom-
mendation of services are popular on the worldwide web, but may
not contain accurate or up-to-date information. They also may not
be available to users at the time they need them, such as to find a
restaurant or repair shop on the road in an unfamiliar area. Fur-
ther, many users may not bother to input detailed reviews or ratings
long after the fact. As an alternative, mobile device users could
install an application containing the GPS locations of certain busi-
nesses, such as restaurants. They could then bookmark and rate the
restaurant immediately after completing their meal using a simple
location-aware interface. Other users of the recommendation ser-
vice could query local devices to see how many local users have
bookmarked a particular restaurant and obtain a composite rating
of the restaurant from others in the area. This would provide an
immediate answer to the user’s query based on recent and reliable
information from other mobile device users.

Automobile Navigation A third application of Infinity is to im-
prove the accuracy of automobile navigation services. Suppose that
a car navigation system uses stored map information to determine
the fastest route for a specified trip. It relies on recent and accurate
information about traffic density on the current route and alterna-
tive routes to adjust the route to current traffic conditions. Current
systems rely on passively collected traffic density information pro-
vided by a central service. However, navigation systems can plan
more efficient routes by exchanging traffic information with nav-
igation devices in numerous other cars in the area. Each car can
query neighboring cars about traffic information on the road ahead,
forwarding queries to other cars within communication range, as
appropriate. This would provide timely and location-specific infor-
mation, allowing the system to gather density information as well
as intended routes of other travelers. This would lead to signifi-
cantly more accurate traffic models and better routing decisions.

These scenarios underscore the need for new technology to en-
able many different mobile data sharing applications.

1.2 Paper Organization

In section 2, we define the requirements for the Infinity mid-
dleware platform to enable this seamless query processing in a net-
work of massively distributed data sources. In section 3, we discuss
the state of the art in mobile computing and the technical primi-
tives required for this next generation middleware. We present the
Infinity system architecture in section 4 and describe our prototype
implementation in section 5. We outline future research directions
in section 6 and conclude in section 7.

2. REQUIREMENTS

To support easy development of applications, the Infinity mid-
dleware platform must meet several requirements. First, it must
provide a communication interface to allow data transfer among
devices. This involves transforming the data into a platform-inde-
pendent format, ensuring reliable data transfer, and automatically
choosing the optimal communication channel (e.g. GPRS, Blue-
tooth) for other devices and applications.

Second, the middleware must support transparent local and dis-
tributed data access in a uniform manner. Thus, the data access
component must be able to determine which remote data sources to
contact, based on the query and the current system context.

Third, as mobile devices only have a limited number of appli-
cations installed at any given time, users should be able to share
applications among devices to facilitate collaboration and informa-
tion sharing for arbitrary tasks. To reduce the risk of distributing

viruses or other malware, applications should not be able to access
restricted information and should only execute allowed operations.
The middleware should also provide a means of transferring appli-
cations and installing them on remote devices. It should provide
the user with reliable information about the application so the user
can make an informed decision regarding whether to allow those
operations.

Fourth, because mobile devices store sensitive personal infor-
mation, privacy protection and selective information sharing are
essential for a data sharing middleware platform. Privacy policy
enforcement should be transparent to the query processing and any
other application. It should also be flexible enough to support com-
plex privacy rules that are scalable to large networks.

Finally, the data sharing middleware should not interfere with
the normal device operation or require installation of a completely
new software environment. Instead, it should leverage the mobile
device’s existing hardware and software infrastructure.

3. RELATED WORK

Although mobile ad hoc networks are an active area of research,
the challenges of developing privacy-preserving, location-aware da-
ta sharing applications have only been explored in other contexts.

CarNet [5] is an example of an ad hoc wireless network architec-
ture for traffic data exchange among automobiles. While it supports
data exchange among mobile devices and forwarding of queries to
the appropriate data sources, CarNet relies on special hardware and
is restricted to specific applications. Further, although it addresses
the privacy problem of tracking the movement of mobile devices,
the CarNet architecture does not address privacy problems associ-
ated with the shared data, as in Infinity .

Internet peer-to-peer systems [2, 7, 3] address the problem of
accessing data in a volatile set of users. Research on peer-to-peer
systems has also explored data privacy concerns [2, 3], but these
systems rely on a constantly available network infrastructure and
global indexing services. Such privacy measures are unsuitable for
mobile ad hoc networks with the constantly changing connectiv-
ity of devices. Also, peer-to-peer systems typically do not address
application sharing.

There are several systems for service discovery in pervasive envi-
ronments, including MSDA [6] and Jini [8]. These systems enable
service discovery for applications following a client-server model
in heterogenous environments, but do not address data sharing sup-
port for applications on top of their systems or the associated pri-
vacy concerns. Jini does include the means to share applications
among partners.

Sensor databases and systems, such as IrisNet [?], web service
platforms [?, ?], specialized mobile application platforms, for ac-
tivities like emergency evacuation and route planning, and collabo-
rative filtering technology for mobile environments assume the con-
solidation of data, from many sources, into a centralized coordina-
tion module or repository. This design choice, which is not made
in the Infinity middleware, limits the usefulness of related technol-
ogy when this central service is down, due to natural or man-made
disasters.

Enforcement of privacy-preserving access and disclosure poli-
cies in relational databases has been introduced in [1, 4]. We lever-
age similar techniques for this work, which represents a novel ap-
plication in the ad hoc mobile network space; as other approaches
to privacy preservation enable controls at the application rather than
the data level.

The main differentiators of Infinity over all the related work is
in the articulation of how to enable a web-styled application plat-
form, the cohesive integration of the different technologies needed

E 2 Application

Runtime Engine

Query Engine

Privacy § Communication
Z Data
E

N
R
S’

Figure 1: System Architecture of the Infinity Middleware.

to create the foundation of a powerful, agnostic mobile device and
the inclusion of novel technology to address privacy concerns. This
also represents this paper’s contribution.

4. SYSTEM ARCHITECTURE

To address the requirements outlined in Section 2, we propose a
new middleware architecture that consists of: (1) a communication
module, (2) a runtime engine, (3) a query processor, and (4) a pri-
vacy enforcement engine. These modules each address a specific
requirement outlined above. Together, they provide a comprehen-
sive framework for easy development and deployment of privacy-
preserving, data sharing applications in mobile ad hoc networks.
But the components can also be used individually to support devel-
opment of native applications for specific platforms.

Figure 1 illustrates the Infinity solution architecture. We de-
scribe the component parts and their interdependencies in the fol-
lowing sections.

4.1 Communication Module

The communication module provides information exchange ca-
pabilities to the other Infinity modules, including methods to trans-
form objects to and from a format that is device and operating sys-
tem independent. This format supports all data types that Infinity
applications exchange and the applications themselves. This is nec-
essary to transmit information among different hardware and soft-
ware platforms.

The communication module also provides resource discovery. It
monitors the available partners on different communication chan-
nels and provides resource information to the other modules to
make appropriate routing decisions. Information about the avail-
able communication partners is important in ad hoc networks be-
cause the set of partners can be extremely volatile over time.

The communication module further ensures that the transmitted
data is correct and provides the results of transmissions to the query
module or the runtime module through a publish-subscribe mecha-
nism. Each module maintains two queues — one for incoming mes-
sages and another for outgoing messages. These queues allow in-
formation transfer among the communication module, the query
module, and the runtime module.

Finally, the communication module transparently chooses the lo-
cally optimal channel for data transmission, based upon the capa-
bilities of the recipient and channel characteristics such as cost,
available bandwidth and reliability.

4.2 Query Processor

The main function of the query processor is to provide transpar-
ent data access. Transparency is essential for application develop-
ment because it obscures the complexity of the network structure
from the developer. The query processor receives queries from the
runtime engine, a native application, or the communication mod-
ule (in the case of remotely initiated queries). It then enables local
and remote applications to process these queries, irrespective of the
local data representation and the current storage location of the re-
quested data. The query processor supports restrictions on queries
of the local data store when the application only needs access to
local data.

To achieve transparency, the query language must be declarative
rather than procedural. That is, queries should describe what data
needs to be retrieved rather than the method of retrieval. The In-
finity prototype uses SQL as its query language. We extended the
query syntax with an optional parameter to indicate either local or
global data access.

Transparent data access also requires a virtual global data schema
so that queries can be formulated without precise knowledge of the
distributed data placement. Since a global data schema cannot be
sufficiently comprehensive to cover all possible data objects for any
possible application, it must be seamlessly extended with applica-
tion specific data. We accomplish this by allowing applications to
define additional relations, which the query engine automatically
creates at the first invocation of the application. Query engines in
devices without the specific application installed will simply return
empty results for any queries of those relations. The names of these
extensions must be globally unique, e.g., by extending the relation
names with the application name and version.

Although Infinity uses a global data schema to allow transpar-
ent data access, mobile devices can store data in a different local
schema. Indeed, this will be the most common case, as various mo-
bile operating systems and platforms store information in different
formats. Therefore, the query engine translates queries formulated
against the global data schema into ones formulated against the lo-
cal data schema. It then translates the results back into the global
schema.

The actual processing of a query also contributes to transparent
data access. Upon receiving a query from the runtime engine (or
communication module, in the case of a remotely initiated query),
the query processor analyzes the query to determine whether it can
be answered completely with local data. If so, the query processor
translates the query into the local data schema and forwards it to
the privacy enforcement module, which rewrites the query to be
compliant with the privacy policy (avoiding violations) and then
executes the query on the local data (Step 3a in Figure 2).

If remote data sources are necessary to answer the query, the
processor splits the original query into two parts. The first part in-
cludes the portion of the query that can be answered with local data
and is treated like any other local query. The second part includes
those portions of the query that require access to remote data. The
query processor determines which data sources are necessary to an-
swer the query, exploiting locally available information such as the
current availability of other devices. It then augments the query to
contact the minimum necessary remote devices and forwards the
augmented query to the communication module. The module for-
wards the query to the appropriate remote devices and returns any
results to the query engine (Steps 3b and 4 in Figure 2).

After receiving the local query results and any remote results,
the query engine unites these partial results. This may also entail
post-processing steps, such as calculating aggregates over the par-
tial results. The engine then translates the united results back into

Runtime Engine/
Communication Module

5. Result Processing

1. Query Analysis

Privacy Module

4. RemoteQueryK 3a. Local Execution €= 2 Query Rewriting

3b. Routing

Figure 2: Query processing in the Infinity middleware.

the global schema and returns them to the query source, i.e. the
runtime engine or the communication module.

We refer to this method of executing a query locally to the extent
possible and then passing the remaining parts of the query to the
appropriate remote devices as "process and forward." This method
results in queries being propagated through the network of devices,
with the query results returned to the originator.

4.3 Runtime Engine

As identified in Section 2, one of the design goals of Infinity is
the ability to share applications across devices regardless of their
hardware or operating system. This requires two functions. First,
applications must be specified in a platform-independent way to
enable transfer. Second, each device must contain an environment
to execute these applications. Both functions are performed by the
Infinity runtime engine.

To enable these functions, we designed an application model
similar to the web services model. Each runtime engine acts like a
web server, listening on a configurable local port for HTTP requests
and delivering content through this port. All applications are web
applications written in HTML and JavaScript, running inside any
web browser available on a mobile device. The applications and the
runtime engine exchange queries and results using standard HTTP
messages. To further simplify application development, Infinity
also provides a set of JavaScript constructs that aid in the commu-
nication with the runtime engine and ease the processing of query
results by the application.

An application must be accompanied by a machine-readable XML
specification file to be installed on the Infinity middleware. This
specification contains the description of any data schema exten-
sions used by the application as well as a description of all of the

queries the application may generate. The runtime engine reads
and processes the application specification upon invocation. It then
ensures that the schema extensions are created locally, if necessary,
and sets up the runtime environment for the application.

The second function of the runtime engine is to package applica-
tions and deploy them on remote devices using the communication
module. This function may be invoked by the user. It may also be
invoked automatically if, for example, a remote device is unable to
process an information request because certain schema extensions
are not available on the device. In this case, the runtime engine on
the local device would bundle the application specification and the
actual application and send them to the remote device via the com-
munication module. Once the application has arrived at the remote
device, the runtime engine on the remote device inspects it and spe-
cially processes the application specification. It then presents the
results of this analysis to the user of the remote device and asks for
permission to install the application. To prevent the user from being
overwhelmed by application installation requests, the middleware
can be configured to block certain or all such requests.

Since the runtime engine only allows the application to issue
queries listed in the specification file, the user can decide, based
on those queries, whether to reveal information sought by the ap-
plication. Alternatively, the user can amend her privacy policy to
restrict data access at a finer granularity or completely deny the
installation of the particular application. If the user grants permis-
sion, the received application is stored on the device and started
normally through the runtime engine. The mobile device can then
participate in the newly installed application.

4.4 Privacy Enforcement

The privacy enforcement module is a key component of the In-
finity architecture, particularly in the volatile environments of mo-
bile ad hoc networks. Infinity provides reliable privacy enforce-
ment by ensuring that all access proceeds through its privacy en-
forcement module.

To be useful and effective in mobile ad hoc networks, privacy
preferences should be enforced automatically with minimal user
intervention. Otherwise, the constant adaptation of privacy settings
due to network and application changes would make the system
unusable. For this reason, we have designed a policy-based pri-
vacy enforcement module for the Infinity middleware. The privacy
module automatically enforces user-defined privacy rules in deter-
mining whether to grant access to remote applications.

A privacy policy is a set of rules specifying the conditions un-
der which certain data may be accessed and disclosed. The policy
states which information may be accessed by whom, for what pur-
poses, and under what conditions. It must be possible to specify
individual privacy rules in broad categories or on a fine-grained ba-
sis. While broad categories are often sufficient, fine-grained con-
trols may be necessary to implement more specific privacy pref-
erences. For example, a broad rule may prohibit sharing of infor-
mation in the personal address book, but a more specific rule may
allow sharing of certain addresses with specified family members.
Broad categories are used to design rules for the base cases, while
more specific rules may be defined for specific persons or data.

Purpose specification is also important in designing privacy poli-
cies. It allows owners to control access to their data further based
upon the intended use of the data. This purpose can usually be
inferred from the application requesting access to the data. For
example, a user could specify that personal addresses are not to be
shared other than for emergencies. If a rescue vehicle sought access
to a particular address, the policy engine could infer an emergency
purpose in deciding whether to grant access. To allow sharing in ad
hoc networks, purpose classes would have to be widely known and
therefore standardized. To overcome the limitations of a small set
of standard purposes delivered with the base installation of the mid-
dleware, users can add more fine-grained conditions to the privacy
rules.

Infinity uses a negative base policy, which provides that no in-
formation may be disclosed by default. Additional positive rules
may affirmatively specify the conditions under which certain infor-
mation may be accessed. This base configuration ensures that the
middleware is safe from unwanted intrusion "out of the box." To
enable selective sharing, though, a set of base rules can be defined
to disclose minimally intrusive information, such as allowing the
sharing of general business addresses.

Once the rules of the privacy policy are specified, the Infinity
middleware automatically enforces them for every data access. We
employ the same technique as defined in [4], to transform queries
so that only data permitted by the privacy policy is retrieved. The
privacy enforcement module analyzes and rewrites incoming queries
to that that they only access data items that the appliable policy al-
lows to be revealed. Only the rewritten query is executed against
the local data repository. This ensures that only the minimal amount
of data necessary to answer the query is retrieved, enhancing both
the security and the performance of the system.

5. THE INFINITY PROTOTYPE

To demonstrate the feasibility the Infinity framework, we have
implemented a prototype on several mobile devices, including two
Cingular 8125 Pocket PCs and two Cingular 2125 Smartphones,

, August 04, 2006

Owner: 2125lakshmi

[Turning 8T on for scaming.
Recy'c: [08/042006, 17:00.21]

Figure 3: Deploying the Evacuation Routing Application.

using the Bluetooth communication protocol. We developed two
sample applications on top of the middleware — one for an evacua-
tion routing service and a second for a restaurant recommendation
service.

We chose these scenarios because they require: (1) access to ad
hoc networks with large user populations, (2) process-and-forward
distributed query processing, (3) location-sensitivity, (4) privacy
policy enforcement, and (5) availability of recent and continually
updated data. Generally, these characteristics define application
domains well-suited for the Infinity middleware.

In this section, we describe the evacuation routing prototype, us-
ing the two Cingular 8125 Pocket PCs. As described in Section
1.1, this application uses map data and information about the cur-
rent position of mobile devices to automatically determine the least
crowded evacuation route. For the prototype, we provided map data
for two test sites and used an external GPS receiver to provide lo-
cation information. In an indoor application scenario as described
below, position information could for example be acquired through
triangulation using known positions of wireless senders like access
points or RFID readers. In any case, the phones retrieve the location
information as needed by the application. Consequently, the global
schema for this prototype contains the following two additional re-
lations (which are also the only ones accessed by the application):

e Map (containing the map information)
e Position (containing ID and position of devices)

The global and local schema for the map information are iden-
tical and there is no materialized local schema for the position in-
formation. Instead, the query engine maps each access to Position
onto an access to the location sensing device.

5.1 First Steps

First, the middleware must be installed and initialized. This
starts the runtime engine and query processor, allowing applica-
tions to be loaded. In Figure 3, the phone on the left contains the
evaluation routing application and is deploying it to the phone on
the right.

As the phone on the left attempts to share the evacuation ap-
plication, the user of the phone on the right is prompted with an
installation dialog asking whether she would like to install this ap-
plication. After the user reviews the application specification and

-
X Cingular

Figure 4: Initial Displays from Users of Evacuation Routing
Application.

accepts the request, the phone on the right installs and initializes
the application. This includes the creation of the mapping between
the Map and Position tables in the global schema and the position
information.

This deployment step can occur at any time during normal oper-
ation.

5.2 Application Use

Once the application is running (Figure 4), it queries other users
within its particular location (e.g., building, public venue, down-
town, etc.) to find the least crowded and fastest exit route. To
achieve this, the application invokes a query that requests the posi-
tion of all users in the location. The runtime engine creates the nec-
essary control structures, like buffers for query results and timers,
to provide the application with the query results at a later time. It
then forwards the query to the query processor.

The query that retrieves the positions of all mobile devices within
range is of the form "select coordinates from Postion". The query
processor analyzes this query and splits it into two parts. It then
translates the first part into calls to the positioning device to retrieve
the current position of the mobile device. Before the query proces-
sor executes the query, it checks the query against the local privacy
policy. The following table shows example privacy rules for the
evacuation scenario (the first rule is actually used in the scenario):

Rule Data Accessor Purpose Condition
1 Position any emergency -
2 Position | manager | work related Mo-Fr
9am-5pm

Next, the second part of the query is sent out to other users in
the same location to retrieve their exact position. In our simple ex-
ample, the remote query is identical to the original query for the
global schema. The query is passed to the communication mod-
ule of the middleware, which transforms the query into a generic
and machine independent textual representation, chooses the ap-
propriate communication channel, and sends the query to remote
devices. In our prototype implementation, Bluetooth connections
are the only supported communication channel. At the remote de-
vice(s), the queries are received by the respective communication
modules and passed to the query processor for execution against
local data sources. When the original mobile device receives the

Figure 5: Re-Routing Users based on Query Results

remote query results, it accumulates them, processes them in the
query processor, and forwards them to the runtime engine. In turn,
the runtime engine transforms them into a suitable format to be re-
trieved by the application.

In Figure 5, this process yields different routing plans for the
users of the left and right phones due to the flow of people out of
the building.

6. FUTURE WORK

The Infinity middleware demonstrates that privacy-preserving
data sharing applications for mobile ad hoc networks can be de-
veloped easily in this unified framework. However, many open
questions remain for further research.

One open issue involves metrics for communication channel se-
lection. While least-cost routing has been studied for stable wired
as well a mobile networks, ad hoc networks require different strate-
gies. Cost and reliability are not the only considerations. Transmis-
sion speed can become a decisive factor in such volatile networks,
since the chance of losing connection to a device increases with
the length of the required transmission window. This may rule out
certain otherwise seemingly optimal channels.

Query routing also presents similar research problems. The per-
formance and effectiveness of the process-and-forward approach to
query processing depends on the effectiveness of routing decisions.
The goal is to have a minimal number of recipients providing the
maximum amount of information. Solutions for this decision prob-
lem must be evaluated, especially with respect to their scalability
to larger networks with limited information about the participants.

Privacy and security also present interesting research topics. One
such topic involves further investigating possibilities for user iden-
tification in mobile ad hoc networks. This is a precondition for the
use of fine-grained and user-specific privacy policies. The short
lifetime and high churn of mobile ad hoc networks poses severe
constraints. A second topic concerns the ease of defining and main-
taining privacy policies. Policy definition should be intuitive and
quick, even on mobile devices with limited capabilities.

Another important research challenge is to develop caching strate-
gies for query results. To avoid having a query unnecessarily prop-
agated through the entire network, previous query results should
be cached to answer similar queries from other devices. Determin-
ing which results should be cached and for how long has a strong

impact on the performance of the entire system.

While our prototype implementation provides initial approaches
for some of these research problems, more thorough investigations
are necessary.

7. CONCLUSION

The increasing popularity and diversity of mobile devices, minia-
turization, decreasing hardware costs, and shifting consumer habits
indicate the emergence of a network of massively distributed data
sources. Such a network requires technology that can integrate in-
formation from these infinite data points, leverage available net-
works through local communication channels, address data privacy
concerns, and support application deployment and use across het-
erogeneous platforms.

The Infinity middleware platform provides a framework for in-
formation sharing and collaboration in ad hoc networks of mobile
devices. We have demonstrated that it is feasible to develop and de-
ploy applications on this platform. Infinity accommodates a variety
of practical scenarios, including traffic monitoring, disaster recov-
ery and rescue tools, recommendation services, and many others.
We hope that our approach will be a useful first step in developing
platform-independent applications that leverage the vast amounts
of recent, location-specific information available in mobile ad hoc
networks.

8. ACKNOWLEDGMENTS

The authors would like to thank Rakesh Agrawal, Karin Kailing,
and Jerry Kiernan for initial discussions on the work and Leonard
Lee, Eva Shon, Yong Yao and Ian Yap for implementing the proto-
type of the Infinity middleware.

9. REFERENCES

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic Databases.
In VLDB ’02: Proc. of 28th Int. Conf. on Very Large Data Bases,
pages 143-154, 2002.

[2] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer
content distribution technologies. ACM Computing Survey,
36(4):335-371, 2004.

[3] R. Huebsch, B. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis,
T. Roscoe, S. Shenker, I. Stoica, and A. R. Yumerefendi. The
Architecture of PIER: An Internet-Scale Query Processor. In CIDR
'05: 2nd Biennial Conf. on Innovative Data Systems Research, pages
28-43, 2005.

[4] K. LeFevre, R. Agrawal, Ercegovac, R. Ramakrishnan, Y. Xu, and
D. DeWitt. Limiting Disclosure in Hippocratic Databases. In VLDB
"04: Proc. of the 30th Int. Conf. on Very Large Data Bases, pages
108-119, Toronto, Canada, 2004.

[5] R.Morris, J. Jannotti, F. Kaashoek, J. Li, and D. Decouto. Carnet: a
scalable ad hoc wireless network system. In EW 9: Proceedings of the
9th workshop on ACM SIGOPS European workshop, pages 61-65,
New York, NY, USA, 2000. ACM Press.

[6] P.-G. Raverdy, O. Riva, A. de La Chapelle, R. Chibout, and V. Issarny.
Efficient context-aware service discovery in multi-protocol pervasive
environments. In MDM ’06: Proceedings of the 7th International
Conference on Mobile Data Management (MDM’06), page 3,
Washington, DC, USA, 2006. IEEE Computer Society.

[7] I Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet
applications. In Proc. of the ACM SIGCOMM 2001 Conference, pages
149-160, 2001.

[8] J. Waldo. The jini architecture for network-centric computing.
Commun. ACM, 42(7):76-82, 1999.

