
Efficient Similarity Search in

Structured Data

Dissertation im Fach Informatik

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

von

Stefan Schönauer

Tag der Einreichung: 10.11.2003

Tag der mündlichen Prüfung: 11.2.2004

Berichterstatter:

Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Thomas Seidl, Rheinisch-Westfälische Technische Hochschule Aachen

ii

Acknowledgment

This work would not have been possible without the support and en-

couragement of many people. I want to express my gratitude to all of

them, even if I cannot mention everyone here.

First of all, I want to extend my warmest thanks to my supervisor

Prof. Dr. Hans-Peter Kriegel who gave me the opportunity to work on

this topic. His way of leading the group and creating an inspiring and

productive working environment will always be a model for me.

I am especially thankful to Prof. Dr. Thomas Seidl, who readily

agreed to act as a second reviewer. His advice and his example greatly

influenced my understanding of good scientific work.

The help and support of my colleagues by inspiring discussions as

well as humor were essential for the development of this thesis. I am

especially grateful to Dr. Marco Pötke whose friendship and encour-

agement were invaluable.

Susanne Grienberger deserves a special thanks. She not only proof

read this thesis and helped to brush up the English, but also took a

lot of the administrative burden. Her verve and helpfulness are some

of the reasons the past years went by so easily.

The importance of Franz Krojer, who kept our equipment running

iii

iv ACKNOWLEDGMENT

smoothly, is not to be underestimated. I would like to thank him also

for the many wonderful discussions about hardware, software and life.

The support by my friends kept me going even during harder times.

Among others, Petra and Werner Funk and Inga Hege have to be

mentioned here.

Finally, I want to thank my family for their love and care. I would

be nothing without you.

Stefan Schönauer

Munich, November 2003.

Abstract

Modern database applications are characterized by two major aspects:

the use of complex data types with internal structure and the need for

new data analysis methods. The focus of database users has shifted

from simple queries to complex analyses of the data, known as knowl-

edge discovery in databases. Important tasks in this area are the group-

ing of data objects (clustering), the classification of new data objects

or the detection of exceptional data objects (outlier detection). Most

algorithms for solving those problems are based on similarity search in

databases. This makes efficient similarity search in large databases of

structured objects an important basic operation for modern database

applications.

In this thesis we develop efficient methods for similarity search in

large databases of structured data and improve the efficiency of existing

query processing techniques. For the data objects, only a tree or graph

structure is assumed which can be extended with arbitrary attribute

information.

Starting with an analysis of the demands from two example applica-

tions, several important requirements for similarity measures are iden-

tified. One aspect is the adaptability of the similarity search method

v

vi ABSTRACT

to the requirements of the user and the application domain. This can

even imply a change of the similarity measure between two successive

queries of the same user. An explanation component which makes clear

why objects are considered similar by the system is a necessary pre-

condition for a purposeful adaption of the measure. Consequently, the

edit distance, well-known from string processing, is a common similar-

ity measure for graph structured objects. Its feature to allow a visu-

alization of corresponding substructures and the possibility to weight

single operations are the reason for this popularity.

But it turns out that the edit distance and similar measures for tree

structures are computationally extremely complex which makes them

unsuitable for today’s large and even growing databases. Therefore,

we develop a multi-step query processing architecture which reduces

the number of necessary distance calculations significantly. This is

achieved by employing suitable filter methods.

Furthermore, we show that by easing certain restrictions on the sim-

ilarity measure, a significant performance gain can be obtained without

reducing the quality of the measure. To achieve this, matchings of sub-

structures (vertices or edges) of the data objects are determined. An

additional cost function for those matchings allows to derive a simi-

larity measure for structured data, called the edge matching distance,

from the cost optimal matching of the substructures. But even for

this new similarity measure, efficiency can be improved significantly

by using a multi-step query processing approach. This allows the use

of the edge matching distance for knowledge discovery applications in

large databases. Within the thesis, the properties of our new similar-

vii

ity search methods are proved both theoretically and through experi-

ments.

viii ABSTRACT

Abstract (in German)

Moderne Datenbankanwendungen werden vor allem durch zwei we-

sentliche Aspekte charakterisiert. Dies ist zum einen die Verwen-

dung komplexer Datentypen mit interner Struktur und zum anderen

die Notwendigkeit neuer Recherchemöglichkeiten. Der Fokus bei der

Datenbankbenutzung hat sich von einfachen Anfragen hin zu kom-

plexen Analysen des Datenbestandes, dem sogenannten Knowledge-

Discovery in Datenbanken, entwickelt. Wichtige Analysetechniken in

diesem Bereich sind unter anderem die Gruppierung der Daten in Teil-

mengen (Clustering), die Klassifikation neuer Datenobjekte im Bezug

auf den vorhandenen Datenbestand und das Erkennen von Ausreißern

in den Daten (Outlier-Identifikation). Die Basis für die meisten Ver-

fahren zur Lösung dieser Aufgaben bildet dabei die Bestimmung der

Ähnlichkeit von Datenbankobjekten. Die effiziente Ähnlichkeitssuche

in großen Datenbanken strukturierter Objekte ist daher eine wichtige

Basisoperation für moderne Datenbankanwendungen.

In dieser Doktorarbeit werden daher effiziente Verfahren für die

Ähnlichkeitssuche in großen Mengen strukturierter Objekte entwickelt,

bzw. die Effizienz vorhandener Verfahren deutlich zu verbessert. Dabei

wird lediglich eine baum- oder allgemein graphartige innere Struktur

ix

x ABSTRACT (IN GERMAN)

der Datenobjekte vorausgesetzt, die durch beliebige Attribute erweitert

wird.

Ausgehend von einer Analyse der Anforderungen an Ähnlichkeits-

suchverfahren in zwei Beispielsanwendungen aus dem Bereich der Bild-

suche und des Proteindockings, wurden mehrere wichtige Aspekte der

Ähnlichkeitssuche identifiziert. Ein erster Aspekt ist, das Maß für die

Ähnlichkeit für den Benutzer anpassbar zu gestalten, da der zugrun-

deliegende Ähnlichkeitsbegriff sowohl benutzer- als auch situations-

abhängig ist, was bis hin zur Änderung des Ähnlichkeitsbegriffs zwi-

schen zwei aufeinanderfolgenden Anfragen gehen kann. Voraussetzung

für eine zielgerichtete Anpassung des Ähnlichkeitsbegriffs ist dabei eine

Erklärungskomponente, welche dem Benutzer das Zustandekommen

eines Ähnlichkeitswertes verdeutlicht. Die aus der Stringverarbeitung

bekannte Edit-Distanz ist deshalb ein weit verbreitetes Maß für die

Ähnlichkeit von graphstrukturierten Objekten, da sie eine Gewichtung

einzelner Operationen erlaubt und durch eine Zuordnung von Teilob-

jekten aus den zu vergleichenden Strukturen eine Erklärungskompo-

nente liefert.

Es zeigt sich jedoch, dass die Bestimmung der Edit-Distanz und ver-

gleichbarer Ähnlichkeitsmaße für Baum- oder Graphstrukturen extrem

zeitaufwendig ist. Es wird daher zunächst ein mehrstufiges Anfrage-

bearbeitungsmodell entwickelt, welches durch geeignete Filterschritte

die Anzahl der notwendigen Distanzberechnungen massiv reduziert

und so die Geschwindigkeit der Anfragebearbeitung deutlich steigert

bzw. erst für große Datenmengen akzeptabel macht. Im nächsten

Schritt wird aufgezeigt, wie sich durch Lockerung einiger Bedingungen

xi

für das Ähnlichkeitsmaß deutliche Geschwindigkeitssteigerungen errei-

chen lassen, ohne Einbußen bezüglich der Qualität der Anfrageergeb-

nisse hinnehmen zu müssen. Dazu werden Paarungen von Teilstruk-

turen (Knoten oder Kanten) der zu vergleichenden Objekte bestimmt,

die zusätzlich mittels einer Kostenfunktion gewichtet werden. Eine

bezüglich dieser Kostenfunktion optimale Paarung aller Teilstrukturen

stellt dann ein Maß für die Ähnlichkeit der Vergleichsobjekte dar, die

sogenannte ”edge matching distance”. Es zeigt sich jedoch, dass auch

für dieses neue Ähnlichkeitsmaß eine mehrstufige Anfragebearbeitung

zusammen mit entsprechenden, neuartigen Filtermethoden eine erheb-

liche Performanzsteigerung erlaubt. Diese stellt die Voraussetzung für

die Anwendung der Verfahren im Rahmen des Knowledge-Discovery in

großen Datenbanken dar. Dabei werden die genannten Eigenschaften

der neu entwickelten Verfahren sowohl theoretisch als auch mittels

praktischer Experimente belegt.

xii ABSTRACT (IN GERMAN)

Contents

Acknowledgment iii

Abstract v

Abstract (in German) ix

I Introduction 1

1 Structured Data 3

1.1 Introduction . 3

1.2 Challenges for Modern Database Systems 4

1.2.1 Complex Data Types 4

1.2.2 The Fast Growing Size of Databases 6

1.2.3 New Database Tasks 7

1.3 Graphs . 8

1.3.1 Important Properties of Graphs 9

1.3.2 Storing Graphs 12

1.4 Example Applications 13

1.4.1 Content-Based Image Similarity 13

xiii

xiv CONTENTS

1.4.2 Bioinformatics 15

1.5 Conclusions and Outline of the Thesis 19

2 Similarity Search 23

2.1 Similarity Models . 23

2.1.1 The Feature Vector Approach 24

2.1.2 Distance-Based Similarity 27

2.1.3 Invariance against Transformations 29

2.1.4 Adaptable Similarity Search 30

2.2 Similarity Query Types 32

2.2.1 Similarity Range Query 32

2.2.2 Nearest-Neighbor Query 34

2.2.3 k-Nearest-Neighbor Query 36

2.2.4 Similarity Ranking Query 37

2.3 Efficient Similarity Search 38

2.3.1 Index Structures 38

2.3.2 Multi-step Query Processing 41

2.4 Requirements for Similarity Measures 43

2.5 Conclusion . 44

II Similarity of Structured Data 45

3 Similarity Measures for Graphs 47

3.1 Measures for Graphs 47

3.1.1 The Edit Distance for Graphs 48

3.1.2 The Measure of Papadopoulos and Manolopoulos 49

CONTENTS xv

3.1.3 The φ-distance Similarity Measure 52

3.1.4 Similarity Based on the Maximal Common Sub-

graph . 55

3.1.5 Error-Correcting Graph Matching 57

3.2 Similarity Measures for Trees 59

4 The Edit Distance 61

4.1 Definition . 62

4.2 Variants of the Edit Distance 66

4.2.1 Weighted Edit Distance 67

4.2.2 Edit Distance for Trees 68

4.2.3 The Measure of Papadopoulos and Manolopoulos 70

4.3 The Time Complexity of the Edit Distance 70

4.3.1 Graph Isomorphism 71

4.3.2 Time Complexity of the Edit Distance 72

4.4 Determining the Edit Distance 74

4.5 Summary . 76

5 Edit Distance Similarity 77

5.1 Handling the Computational Complexity 78

5.2 Filters for the Edit Distance 80

5.2.1 Filters for the Simple Edit Distance 80

5.2.2 Filters for the Weighted Edit Distance 85

5.3 Evaluation of the Filter Methods 87

5.4 Conclusion . 92

xvi CONTENTS

6 Similarity of Trees 95

6.1 Similarity Measures for Trees 96

6.1.1 The Edit Distance for Trees 96

6.1.2 Tree Alignment 97

6.1.3 The Degree-2 Edit Distance 99

6.2 Filters for unordered trees 101

6.2.1 Filtering Based on the Height of Nodes 101

6.2.2 Filtering Based on the Breadth of Trees 109

6.2.3 Filtering based on degree of nodes 110

6.2.4 Filtering based on node labels 112

6.2.5 Combining filter methods 116

6.3 Experimental Evaluation 118

6.3.1 Image databases 119

6.3.2 Web site graphs 127

6.4 Conclusions . 129

7 The Matching Distance 131

7.1 Introduction . 131

7.2 The Vertex Matching Distance 132

7.2.1 Properties of the vertex matching distance . . . 134

7.2.2 Problems of the vertex matching distance 137

7.3 The Edge Matching Distance 138

7.3.1 Properties of the Edge Matching Distance . . . 139

7.4 Effectiveness of the Matching Distance 144

7.5 Efficient Query Processing 147

7.5.1 Metric Index Structures 148

CONTENTS xvii

7.5.2 Filter Methods for the Edge Matching Distance 149

7.6 Experimental Evaluation 156

7.6.1 Image retrieval 157

7.6.2 Protein Similarity 161

7.6.3 Scalability . 163

7.7 Conclusions . 165

8 Conclusions 167

8.1 Background . 167

8.2 Contributions . 168

8.3 Future Work . 170

List of Figures 173

List of Tables 175

References 177

Curriculum Vitae 191

xviii CONTENTS

Part I

Introduction

1

Chapter 1

Structured Data

1.1 Introduction

Database systems are key components of today’s information technol-

ogy infrastructure. With the enormous growth of this infrastructure

in the past decade, new challenges for database systems have arisen.

In both, science and industry, new applications of database systems

have been developed and their importance in practice is rapidly in-

creasing. In this chapter, we will discuss some of the new challenges

for database systems, present our approach to tackle these challenges

and outline the scope of this thesis. Furthermore, we will introduce

the basic concepts behind our approach and describe some example

applications which are repeatedly used in the following chapters.

3

4 CHAPTER 1. STRUCTURED DATA

1.2 Challenges for Modern Database Sys-

tems

The challenges for modern database systems are manifold, including

topics like increased need for data security in e-commerce or integration

of world-wide distributed databases. In this thesis, we will concentrate

on three topics which play a major role in many application domains,

recently. Those topics are the need for complex data types, the fast

growing amount of data and new tasks for database systems.

1.2.1 Complex Data Types

In applications domains like bioinformatics or multimedia data man-

agement, objects appear which cannot be described by a single tuple

in a relational database. Examples of such data objects are molecules,

images or audio data. Those data objects have a complex internal

structure, e. g. atoms in a molecule or objects in an image (cf. figure

1.1. Additionally, those objects are often characterized by internal in-

teraction operations, like chemical interactions. To store such objects

in relational databases, they have to be decomposed in their substruc-

tures which often entails serious performance problems for the database

applications. Consequently, the support for complex abstract data

types which can be used to describe such objects is essential and lead

to the development of object-oriented and object-relational database

systems.

The internal structure of complex data objects varies from applica-

1.2. CHALLENGES FOR MODERN DATABASE SYSTEMS 5

Figure 1.1: Examples of complex structured data objects: a protein

and an image.

tion to application, but often it can be described by using the abstract

concepts of graphs and trees. Figure 1.2 shows two examples of such

data objects. The support of complex graphs-structured data types is

an important feature of today’s database systems.

Data objects of the above type are naturally modeled as attributed

graphs or trees and, therefore, those data types are the main focus of

this thesis.

C

C

C
C

C
C

C

C

C

O

OO

O

H

H
HC

C

C
C

C
C

C

C

C

OO

OOOO

OO

H

H
H

<author>William Shakespeare</author>

<title>Romeo and Juliette</title>

<categorie>drama</categorie>

. . .

Figure 1.2: Graph structured and tree structured objects: a molecule

and an XML document.

6 CHAPTER 1. STRUCTURED DATA

Figure 1.3: Growth of the GenBank database (source:

http://www.ncbi.nlm.nih.gov).

1.2.2 The Fast Growing Size of Databases

Another problem in conjunction with modern databases is their fast

growing size. The amount of data produced in areas like bioinformatics

[BKML+03, BWF+00] or high energy physics [Jar03] are enormous.

Figure 1.3 shows the growth of the GenBank database [BKML+03], a

database of genetic sequences, in the past twenty years. What has to

be noted is that the size of this database doubled almost every twelve

months in the past ten years.

1.2. CHALLENGES FOR MODERN DATABASE SYSTEMS 7

Figure 1.4: The KDD process.

According to Moore’s Law, the performance of computer chips dou-

bles every two years which means that the size of GenBank grows faster

than the computing power. Consequently, it is vital to develop more

efficient algorithms for databases like GenBank in order to ensure ef-

fective knowledge discovery in those databases.

1.2.3 New Database Tasks

A third challenge for modern database systems is the support for new

tasks like Internet connectivity and, especially, knowledge discovery in

databases (KDD). KDD is the process of extracting new, valid and

potentially useful knowledge from databases [FPSS96]. Particularly in

a world of large and fast growing databases, a process to automatically

or at least semi-automatically extract knowledge from those databases

is essential.

The KDD process, as defined by Fayyad, Piatetsky-Shapiro and

Smyth [FPSS96], has several steps which are depicted in figure 1.4.

After a selection and preprocessing of the relevant data, it is trans-

formed in a suitable format. In the data mining step, patterns in the

8 CHAPTER 1. STRUCTURED DATA

data are extracted and later evluated by the user, to gain knowlwedge.

At the center of the KDD process is the data mining step, where the

automatic detection of the information takes place. Several different

subtasks of data mining have been identified, including clustering and

object classification. Clustering is the task of grouping objects, where

the similarity of objects within a group has to be maximized, while

the similarity of objects in different groups has to be minimized. Ob-

viously, the clustering of objects in a database depends on efficient

and effective methods to identify similar objects in the database, or

in other words, it depends on similarity search methods. But those

methods also play a major role in object classification, where new ob-

jects have to be assigned to a class based on the knowledge extracted

from a database of already classified objects. In this context, so-called

nearest neighbor classifiers were successfully used, which assign an ob-

ject to the class of its nearest neighbors in the database. This means

that similarity search is an important basic technique for data mining

in general.

1.3 Graphs

The previous sections can be summarized by the statement that there is

a strong need to develop effective and efficient similarity search meth-

ods for structured data in large databases. Structured data in this

context means data that is modeled as attributed graphs or attributed

trees.

In this section we present the definitions of several important terms,

1.3. GRAPHS 9

starting with the definition of graphs. Since we use graphs to model

finite data objects, we consider only finite graphs.

Definition 1.1 (graph, attributed graph) A graph G(V,E) is a

pair of a finite set of vertices V and a finite set of unordered pairs

E ⊆ V ×V , called edges. An attributed graph is a graph whose vertices

each have associated a vector of attributes Av ⊂ IRn and whose edges

each have associated a vector of attributes Ae ⊂ IRm, with n, m ∈ IN .

A subgraph of a graph G(V,E) is a graph G′ = (V ′, E ′) where V ′ ⊆ V

and the following condition holds:

∀e ∈ E : e = (v, w), v ∈ V ′, w ∈ V ′ ⇒ e ∈ E ′

A graph G(V,E) is said to be directed if all elements of E are ordered

pairs.

Although we define attributes to be real numbers, this type of at-

tributed graph is not limited to real numbers since categorical at-

tributes can be mapped into IR.

1.3.1 Important Properties of Graphs

The different similarity models and algorithms in the following chapters

are all based on the graph properties which we define in this section.

There are several figures used to describe graphs, e.g.chromatic

number or girth. Most important for the discussions in the following

chapters are the order and size of a graph and the degree of a vertex.

10 CHAPTER 1. STRUCTURED DATA

Definition 1.2 (order, size, degree) Let there be a graph G(V,E)

. The number of vertices of G, denoted as |V |, is called the order of

G. The number of edges of G, denoted as |E|, is called the size of G.

An edge e = (v, w) is called incident to the vertices v and w. Two

vertices are said to be adjacent if there exists an edge that is incident

to both of them. The number of edges incident to a vertex v is called

the degree of v, denoted by degree(v).

Another important property of a graph is, whether it is connected or

not.

Definition 1.3 (connectedness) A walk from vertex vi to vertex vj

in a graph is an alternating sequence

〈v1, ei+1, vi+1, ei+2, . . . , vj−1, ej, vj〉

of vertices and edges in the graph, such that ek = (vk−1, vk) for

k = i+1, . . . , j. A graph G(V,E) is said to be connected, if G contains

a walk between each pair of vertices v and w with v, w ∈ V

In many application domains objects contain circle-like structures, as

for example the molecule in figure 1.2. Therefore, the notion of a cycle

in a graph is important.

Definition 1.4 (cyclic graph) A walk is said to be a path if it does

not contain any vertex twice. A graph is said to contain a cycle if it

contains a path with more than three vertices and an edge incident to

the first and to the last vertex on the path.

For the similarity model presented in chapter 7, the concept of a bi-

partite graph is essential.

1.3. GRAPHS 11

Figure 1.5: A bipartite graph.

Definition 1.5 (bipartite graph) A graph G(V,E) is said to be bi-

partite if V can be decomposed into two subsets U and W , such that

for all (v, w) ∈ E, v ∈ U and w ∈ W or v ∈ W and w ∈ U . G is said

to complete bipartite if for all v ∈ U,w ∈ W : (v, w) ∈ E.

Figure 1.5 shows a bipartite graph.

Trees are a very important type of graph and, therefore, we will

discuss similarity of trees more thoroughly in chapter 6.

In discrete mathematics trees are usually defined as undirected,

acyclic and connected graphs and trees with a designated root vertex

are seen as a special type of tree. Other than in mathematics, we define

trees to be directed and rooted. This definition is the most common

in computer science and takes into account that by far the most tree-

structured data objects in computer science are directed and rooted.

Therefore, we define this case as the general one.

Definition 1.6 A connected and directed graph G(V,E) is called a

tree if the underlying undirected graph is acyclic and there is a special

12 CHAPTER 1. STRUCTURED DATA

vertex r ∈ V , called the root of the tree for which there exists a path

from r to all other vertices v ∈ V .

The vertices in a tree are usually called nodes.

1.3.2 Storing Graphs

Storing graphs in a database can basically be done in two ways which

are the use of adjacency matrices or of adjacency lists. While vertices

are always stored in an appropriate structure for sets, the two ap-

proaches differ in the way edges are stored. When using an adjacency

matrix to store a graph with n vertices, a n× n-matrix is created and

an entry in this matrix at position (i, j) that differs from zero means

that there is an edge between the vertices i and j. The advantage of

this approach is that it can be tested very efficiently if two vertices

are adjacent and, therefore, navigation through the graph can be done

very efficiently. The high storage utilization even for sparse graphs is

one of the disadvantages of the adjacency matrix approach. Another

drawback of this approach is that an attribute vector associated with

an edge cannot be stored together with that edge since the edges are

not materialized.

When using adjacency lists, a list containing all vertices which are

adjacent to v is stored for each vertex v in a graph. With this ap-

proach the complete adjacency list of a vertex has to be scanned in

the worst case, in order to decide whether two vertices are adjacent

or not. Therefore, navigation through the graph is rather expensive.

Nevertheless, adjacency lists have the advantage that edge attributes

can be stored with the respective entry in an adjacency list and, con-

1.4. EXAMPLE APPLICATIONS 13

sequently, can be retrieved efficiently together with the accompanying

edge. For this reason, we prefer the adjacency list approach for our

implementations.

1.4 Example Applications

Structured data appears in many application domains, for eample in

face recognition [WFKvdM97], shape retrieval [SKK01] or biochem-

istry [BKAW97]. In this section we describe two applications from the

image retrieval and bioinformatics domain which are both based on

structured data. The data and the requirements of those applications

will be used throughout the thesis to evaluate the similarity search

models and algorithms that are presented.

1.4.1 Content-Based Image Similarity

The task of content-based image similarity search is to find all similar

or the most similar images in the database relative to a given query

image. For content-based image similarity not only colors or shapes

are important, but also the topological relation between shapes is of

importance. When searching for images, e.g.depicting cars, it is not

sufficient to find images containing tires, windows and car bodies. In-

stead, the parts have to be in the correct relative position to each other.

This topological relation of the parts is modeled as an attributed graph

in our example application.

The structure of an image is extracted automatically in a two-step

process. To extract the structure data from an image, it is segmented,

14 CHAPTER 1. STRUCTURED DATA

Figure 1.6: An image and the extracted graph. The size attribute is

not shown.

using an appropriate segmentation algorithm. While there could be

used virtually any algorithm that produces a segmentation of an im-

age, we use a region-growing algorithm which divides the image into

arbitrarily shaped, connected regions of similar color. The second step

of the structure extraction process is the construction of a graph from

the image segments, which is also done in a two-step process. First,

a vertex is generated for each segment and is associated with a vector

containing the segment’s attributes. Those attributes are the average

color of the segment, the size relative to the image size and in some

cases also the horizontal and vertical extension of the segment relative

to the image extensions. In the second step, the vertices that repre-

sent neighboring segments are connected by edges. This way, a graph

is created which represents the topological relations of the segments

present in an image. Figure 1.6 shows an example of an image and the

1.4. EXAMPLE APPLICATIONS 15

number order size

of graphs min. avg. max. min. avg. max

TV images 9898 1 9.03 28 0 11.71 74

commercial color images 8536 1 47.76 325 0 90.03 548

pictographs 705 2 10.97 93 1 9.16 92

Table 1.1: Statistics of the image data sets.

extracted graph.

We applied our structure extraction method to various sets of im-

ages, whic are a set of TV snapshots, commercially available color im-

ages and black and white pictographs. Table 1.1 shows some statistics

about the resulting databases of graphs.

1.4.2 Bioinformatics

The research work presented in this thesis was mainly done with fund-

ing from the German Science Foundation (DFG) under grant num-

ber KR 670/9-1 and KR 670/9-2 and with funding from the Ger-

man Ministry of Education and Research (BMBF) under grant num-

ber 031U112F. Those projects were concerned with the 1:n-docking

of flexible proteins and the functional classification of protein struc-

tures. Consequently, the second application example is from the field

of bioinformatics and deals with protein similarity search and protein

docking.

Proteins are large biomolecules consisting of several hundred up to

several thousand atoms. They are important building blocks of any

living organism, being responsible for the stability of the organism as

16 CHAPTER 1. STRUCTURED DATA

Figure 1.7: Example of two docking proteins.

well as for the regulation of most processes in an organism. All those

functions are performed through the docking of proteins which is the

building of a loose compound by two or more proteins. Therefore,

questions like with which other proteins a query protein can dock and

how the docking complex looks like are very important for biological

and medical research, for example in the field of drug design. Figure

1.7 illustrates the docking of two proteins.

Additionally, similarity search in protein structures is an impor-

tant tool for biologists to determine the function of newly detected

proteins. For this task, it has to be searched for so-called homolo-

gous proteins, i.e. structurally similar proteins with known function

in a database. Studies have shown that homologous proteins usually

also have similar function and, consequently, it can be inferred that

a newly detected protein has a similar function as homologous pro-

1.4. EXAMPLE APPLICATIONS 17

Figure 1.8: Functional classification of proteins.

teins from the database. This way a functional classification of newly

detected proteins is achieved. The process of functional classification

of proteins is shown in figure 1.8. The unclassified protein is trans-

formed into a suitable representation for the classification algorithm.

For structured data this is a graph representation. Afterwards, the

classification takes place based on a similarity search in the database

of proteins with known function.

For the function of a protein, two properties are important, which

are the shape and the chemical properties of the protein surface. Only

if the geometric shape of the surfaces are inverse to each other and

the chemical properties are appropriate, two proteins can dock. A

consequence for protein models is that the model has to be capable of

representing the structure of the surface as well as certain biochemical

attributes of a protein. Attributed graphs are one way to fulfill this

requirement.

To evaluate our similarity search methods in the context of protein

docking and functional classification of proteins, we used the three-

dimensional protein structure data from the PDB database [BWF+00]

18 CHAPTER 1. STRUCTURED DATA

which is one of the most important sources of protein data in molecular

biology.

Our first application is a model for protein docking which is based

on a graph representation of potential docking sites, i.e. a region on

the protein surface that may take part in a docking of two proteins. To

identify those potential docking sites, we used a technique presented by

Meier et al. [MAH+95] which produces a set of potential docking sites

for a protein, each represented as a set of surface points called a region.

Those regions are transformed into graphs in a two-step process.

First, critical points, which are points either in very concave or in

very convex parts of the region, are identified. This identificaton is

done be searching points with high or low solid angle values. The solid

angle of a point is the percentage of a probe sphere around the critical

point which is filled by protein surface points. Each critical point is

represented by one vertex in the created graph. For our experiments,

we concentrated on the geometric aspects of the protein docking prob-

lem. Therefore, no biochemical attributes have been integrated so far.

Instead, each vertex is assigned the solid angle value of the critical

point as an attribute.

In the second step of the graph extraction process, those vertices

representing neighboring critical points are connected by edges. The

edges have associated the Euclidean distance of the critical points

which are connected by the edge. It has to be noted that this pro-

cess does not always yield connected graphs. Instead, a region can be

modeled by a set of connected components. Therefore, the similarity

search methods applied to this problem have to be capable of handling

1.5. CONCLUSIONS AND OUTLINE OF THE THESIS 19

number order size

of graphs min. avg. max. min. avg. max.

functional classification data 800 2 68.89 134 0 90.75 440

docking data 3480 7 22.24 44 6 85.17 268

Table 1.2: Statistics of the protein data sets.

objects modeled in this way.

For the functional classification problem, entire proteins from the

PDB are modeled by attributed graphs. The generation of the graphs

for the proteins is also done in several steps. First, potential docking

sites are identified, using the previously technique of Meier et al., again.

Afterwards, one vertex is generated for each potential docking site,

which has the site’s hydrophobicity and its character as attributes. The

hydrophobicity of an protein surface region is a biochemical property

of the region which has been proven to play a major role in protein

docking. The character of a region is a value representing, whether the

region is concave, convex or flat.

The table 1.2 summarizes some of the characteristics of the data

sets we used in our experiments.

1.5 Conclusions and Outline of the Thesis

In this chapter, we presented some of the challenges of modern database

systems. Those challenges include support for complex data types,

the rapidly increasing size of databases and new applications for da-

tabase systems. We demonstrated that there is a need for efficient

20 CHAPTER 1. STRUCTURED DATA

and effective similarity search methods in large databases of graph

structured data. The aim of this thesis is to improve the efficiency of

known similarity search methods and provide new approaches to solve

the efficiency and effectiveness problems of the existing methods.

The thesis is organized as follows:

In chapter 2, we present important concepts of similarity search.

This includes query types, similarity models and index structures to

support efficient query processing in similarity search systems. Fur-

thermore, we develop a set of requirements which similarity search

methods for attributed graphs have to fulfill in order to meet the de-

mands of modern database applications.

Afterwards, the main part of the thesis begins with a discussion

of existing similarity search methods for graphs in chapter 3. Among

the presented measures, the edit distance stands out, since it is com-

mon in several application domains. Consequently, the strengths and

weaknesses of the edit distance are discussed in detail in chapter 4.

Following the discussion of existing similarity search measures for

graphs, we present techniques to improve the query processing time

when the edit distance is used as similarity measure. Our experimental

evaluation of those techniques also shows that the edit distance can

only be used for large databases if the number of distance calculations

is kept at a minimum.

In chapter 6, techniques for efficient similarity search in large data-

bases of attributed trees are presented. Attributed trees are an impor-

tant subclass of attributed graphs and are used in applications with

hierarchically structured data objects. In this chapter, we also present

1.5. CONCLUSIONS AND OUTLINE OF THE THESIS 21

an application from the area of web site mining.

A new similarity measure for attributed graphs, called the edge

matching distance, is introduced in chapter 7. We demonstrate the

effectiveness of the edge matching distance in experiments and pro-

vide new methods for efficient similarity search in large databases of

attributed graphs using the edge matching distance as similarity mea-

sure.

The thesis closes with a conclusion summarizing the main contribu-

tion of this work. Additionally, an outlook on future research directions

is given.

22 CHAPTER 1. STRUCTURED DATA

Chapter 2

Similarity Search

In the previous chapter, the relevance of similarity search for modern

database applications was already highlighted. The basic task of a

similarity search application is to find objects in the database which

are similar to a query object. In this chapter, we will discuss the

different aspects of this task.

2.1 Similarity Models

The first important aspect of similarity search is the concept of simi-

larity itself. A formal concept of similarity is a necessary basis for any

application in this field. In the literature, two concepts of similarity

have been applied successfully which are the feature vector approach

and the concept of distance-based similarity. We will present the two

concepts in this section and discuss invariance and adaptability issues

of similarity models.

23

24 CHAPTER 2. SIMILARITY SEARCH

object space feature space

Figure 2.1: Similarity based on the feature vector approach.

2.1.1 The Feature Vector Approach

A very common way to define the similarity of objects is the feature

vector approach. For this approach, a domain expert chooses a set

of single-valued object features that describe an object from that ap-

plication domain. Those features span a so-called feature space and

objects are represented as points in this space. This is done by creating

a feature vector for each object which contains the feature values of

the specific object. Then, the similarity or dissimilarity of two objects

is defined as their distance in the feature space. The feature vector

approach for similarity, whose idea is illustrated in figure 2.1, has been

successfully applied in several application domains like medical imag-

ing [KSF+98] and protein similarity [AKKT99].

To determine the distance between two points in the feature space,

several measures are used. Most often it is a variant of the Lp-norms,

2.1. SIMILARITY MODELS 25

which are defined as follows:

Definition 2.1 (Lp-norms) Let there be two vectors x = (x1, . . . , xn),

x ∈ IRn, and y = (y1, . . . , yn), y ∈ IRn. The Lp-norms between x and

y are defined as:

Lp(x, y) = (
n∑

i=1

|xi − yi|p)
1
p

For p = 1 and p = 2 the Lp-norms are the well-known Manhattan

distance and the Euclidean distance, respectively. Most often, the

Euclidean distance is used in similarity search applications based on

the feature vector approach.

A problem of the Lp-norms is that all dimensions of the feature

space are considered to be independent of each other. Consequently, no

relationships between the features, for example substitutability, may

be regarded by the similarity process. But often such relationships

exist, like in the case of color features where orange is certainly more

similar to red or yellow than to blue. To overcome this disadvantage,

Niblack et al. [NBE+93] suggested to use the quadratic form distance

instead of the usual Euclidean distance. The quadratic form distance

of two vectors x and y is defined as

d2
A(x, y) = (x− y) · A · (x− y)T

where A is a positive definite similarity matrix and (x−y)T is the trans-

pose of (x− y). When using the identity matrix as similarity matrix,

the quadratic form distance becomes the classic Euclidean distance

since

(L2(x, y))2 = (x− y) · (x− y)T

26 CHAPTER 2. SIMILARITY SEARCH

By altering the similarity matrix A, it is possible to express re-

lationships between the dimensions of the feature space which is the

desired effect. For methods to ensure efficient query processing with

the quadratic form distance see [Sei97].

Feature Vectors of Attributed Graphs

Because of the set-like internal structure of a graph it is difficult, to ap-

ply the feature vector approach to data modeled as attributed graphs.

This internal structure prevents a unique describtion of the graph

structure with few feature values. The same is the case for the at-

tribute part of an attributed graph. Consequently, many features have

to be extracted from a graph in order to yield a description with suffi-

cient discriminatory power to distinguish between separate objects and

leads to extremely high-dimensional feature vectors. But the high di-

mensionality of the feature vectors can make efficient similarity search

in the database impossible due to a number of effects. For example,

an increasing dimensionality leads to a larger volume of the data space

and to higher distances between the data objects. Those and other

effects are usually described by the term ’curse of dimensionality’.

Additionally, when coosing the features one has to take into account

that any of the simple Lp-norms or the quadratic forms distance yield

sensible results for a similarity search. This fact even worsens the

problem of picking the right features. The distance-based similarity

model, which we describe in the following section, avoids the choice of

any features at all.

2.1. SIMILARITY MODELS 27

distance = 2.5

distance = 1distance = 3

object space

Figure 2.2: The concept of distance-based similarity.

2.1.2 Distance-Based Similarity

The distance-based similarity model is a generalization of the feature

vector model. Instead of transforming the data objects into a feature

space and measuring the distance of the objects in the feature space,

a distance measure for the data objects themselves is defined. This

means that no feature extraction and no choice of features is necessary.

Furthermore, a distance measure which is defined for the structured

data objects can take all object properties into account. The concept

of distance-based similarity is illustrated in figure 2.2.

Obviously, the increased flexibility also means a higher complexity,

since the complete objects have to be managed and, therefore, the

computational complexity of the similarity measure has to be chosen

carefully to ensure efficiency.

28 CHAPTER 2. SIMILARITY SEARCH

The great flexibility of the distance-based approach is founded in

the similarity distance measure. If O is the domain of the objects

in the database, a similarity distance dsim : O × O 7→ IR0
+ is needed

which means the only restriction for the similarity measure is positiv-

ity. While this very high flexibility may be useful in certain special

applications, it usually makes sense to impose some restrictions on

the similarity distance measure in order to ensure that efficient query

processing is possible.

The restrictions imposed on the similarity measure can be summa-

rized by demanding the measure to be a metric, which also justifies to

call it a similarity distance. This requirment implies that the similarty

measure has to fulfill the four metric properties:

1. Positivity: ∀x, y : dsim(x, y) ≥ 0

2. Definiteness: ∀x, y : dsim(x, y) = 0 ⇔ x = y

3. Symmetry: ∀x, y : dsim(x, y) = dsim(y, x)

4. Triangle inequality: ∀x, y, z : dsim(x, z) ≤ dsim(x, y) + dsim(y, z)

The requirements of positivity and definiteness for the similarity dis-

tance reflect the idea that a low distance means high similarity and,

therefore, identical objects should be assigned the lowest possible simi-

larity distance. The idea that objects are mutually similar is expressed

by the symmetry requirement. The triangle inequality ensures that no

object can be very similar to two very dissimilar objects at the same

time.

2.1. SIMILARITY MODELS 29

Demanding metric properties from a similarity distance also has

the advantage that efficient access methods and search algorithms can

be applied, as described in section 2.3.

2.1.3 Invariance against Transformations

Another important topic in the context of similarity models is robust-

ness against geometric transformations of the original data objects.

Similarity search is often done in databases containing geometric de-

scriptions of real-world objects, like molecules, images or mechanical

parts. Our example applications are also from such application do-

mains, so we discuss the robustness against geometric transformations.

By ’robustness against geometric transformations’ we mean invari-

ance against transformations such as translation, rotation or scaling.

Depending on the application, specific invariances are either necessary

or have to be avoided. An example application is similarity search in

a database of proteins. Since there is no standard position or orien-

tation of proteins defined, the proteins in the database have arbitrary

orientation and position in 3D space. Consequently, invariance against

translation and rotation are essential to identify similar proteins. On

the other hand, invariance against scaling is unwanted, because pro-

teins with different size but similar shape have different properties and

should not be considered as similar.

When modeling objects as attributed graphs, invariance against

rotation, scaling, transformation or mirror reflection are fulfilled au-

tomatically by the model, since position information is not included

in the graph model. If these invariances are unwanted, the position

30 CHAPTER 2. SIMILARITY SEARCH

information can easily be included via attributes. An example for this

technique is the data model for proteins which we described for an

protein docking application in section 1.4.2. The protein surfaces are

modeled as vertices, representing critical points on the surface which

are connected by edges, carrying the Euclidean distance of the critical

points as attributes. Since only the information about the relative po-

sitions of the critical points is stored in the graph structure, the model

is obviously invariant against translation and rotation. But invariance

against scaling is not fulfilled, assuming that the similarity distance

measure takes the edge attribute into account, which is not invari-

ant against scaling. This example demonstrates another advantage of

modeling real-world objects as attributed graphs.

2.1.4 Adaptable Similarity Search

In the previous sections, the adaptability of the different models and

techniques was highlighted several times. This adaptability is of great

importance for similarity search applications, because the exact defini-

tion of what is to be considered similar depends on two factors, which

are the application domain and the user. An example of application

requirements is our protein docking application, where we saw that

invariance against translation and rotation is necessary while invari-

ance against scaling has to be avoided. Therefore, the similarity model

and the similarity measure have to provide enough flexibility to allow

adaption to the specific needs of an application.

Apart from the application needs, the notion of similarity can differ

between individual users or even for a single user in different situations.

2.1. SIMILARITY MODELS 31

Similarity search is often an explorative process during which the user

refines his notion of similarity more and more. The adaption to the

application’s needs can be considered during the design phase of the

application and an adaption of the similarity model is possible in this

phase. This approach can not be followed for the adaption to the users

needs, since those can change between two similarity queries. Conse-

quently, the similarity measure has to provide the flexibility to allow

the necessary adaption at runtime. Obviously, this should be possible

with as little influence on query runtimes as possible, to support the

explorative nature of the similarity search process. We already dis-

cussed the quadratic form distance as an example for such a measure.

In [Sei97] efficient query processing techniques are presented which

allow an adaption of the similarity matrix for this measure without

influencing the processing time negatively.

But for a purposeful adaption of the similarity measure, another

point gains importance. The user has to be able to understand why

objects are considered similar by the application in order to change

parameters appropriately. Consequently, the user should be provided

with an explanation of the similarity distance value to support his

understanding. Obviously, a simple numerical value does not fulfill

this requirement. Instead, an explanation how this value comes about

is necessary, which is preferably presented visually for a quick and easy

understanding.

32 CHAPTER 2. SIMILARITY SEARCH

2.2 Similarity Query Types

In similarity search applications, the query types differ from those in

standard database applications. Questions like which database ob-

jects are most similar to a query object or which database objects

are similar to a certain degree, cannot be answered by using exact-

match or partial-match queries. Instead, query algorithms returning

database objects in a certain similarity distance to a query object are

needed. In this section, we will present those query types which are

most important in similarity search applications. For the presentation

of the query types, we assume that O is the universe of all objects

that may appear in a database and that a similarity distance function

dsim : O × O 7→ IR0
+ is defined on the universe O. Furthermore, we

presume that there is a database DB ⊆ O given. It has to be noted

that we do not assume a specific similarity model and the discussions

below hold for applications based on the feature vector model as well

as for applications using the distance-based similarity model.

2.2.1 Similarity Range Query

A basic task in similarity search is to find all objects which are within

a certain similarity distance from a query object. Examples where this

problem has to be solved are density-based clustering methods like

DBSCAN [EKSX96] or OPTICS [ABKS99]. In density-based cluster-

ing, an object o is put into a cluster if there are enough other objects

within a predefined similarity distance to o. To determine a clustering

of a database, for each object in the database the objects within the

2.2. SIMILARITY QUERY TYPES 33

q

Figure 2.3: Result of a range query for object q.

predefined similarity distance have to be found. This is done by using

similarity range queries. Figure 2.3 illustrates the idea of the similarity

range query.

With this intuitive understanding of a similarity range query, we

can define it formally in the following way:

Definition 2.2 (similarity range query) For a query object q ∈ O

and a query range ε ∈ IR0
+, the result of a similarity range query is

defined as

simε(q) = {o ∈ DB|dsim(q, o) ≤ ε}

Obviously, with this definition the number of results for a similarity

range query is not fixed in advance, but can be anything between

zero and the size of the database. Consequently, the choice of an

inappropriate value for the query range ε leads to very few or too

many query results and it remains to the user to re-run the query

34 CHAPTER 2. SIMILARITY SEARCH

q

Figure 2.4: Result of a nearest-neighbor query with two nearest neigh-

bors for query object q. The gray circle represents the equivalent range

query.

with an adapted query range. This problem is another reason, why a

similarity measure should also include an explanation of the distance

value to allow an adaption of the query range.

2.2.2 Nearest-Neighbor Query

Another important task in similarity search applications is to find the

database object which is most similar to a query object. An example

for this query type is to find the most similar protein with known

function in a database, given a query protein with unknown function.

This type of query is called nearest-neighbor query and can be defined

informally as the task to find the database object with the smallest

similarity distance to the query object. Figure 2.4 illustrates the idea

of the nearest-neighbor query.

2.2. SIMILARITY QUERY TYPES 35

But this informal definition ignores the problem that the database

object with the smallest distance may not be unique. In this case,

one of the objects with the smallest similarity distance to the query

object may be chosen randomly. But then query processing is no longer

deterministic and important results may be missed. Therefore, the

nearest-neighbor query is defined in a way that allows a set of results

which possibly contains more than one element.

Definition 2.3 (nearest-neighbor query) For a query object q, the

result of a nearest-neighbor query is defined as

simnn(q) = {o ∈ DB|∀p ∈ DB : dsim(q, o) ≤ dsim(q, p)}

With this definition, it remains to the user to resolve the ambigu-

ity problem, but still, the result is at least a non-empty set. Espe-

cially when exploring a database manually, the guaranteed result is an

advantage over the similarity range query for the user. The follow-

ing lemma reveals another relationship between nearest-neighbor and

range queries.

Lemma 2.1 For every query object q ∈ O, the following holds:

εnn = min{dsim(q, o), o ∈ DB} ⇒ simnn(q) = simεnn
(q)

Proof. For every object o ∈ DB the following equivalences hold:

o ∈ simnn(q)

⇔ ∀p ∈ DB : dsim(q, o) ≤ dsim(q, p)

⇔ dsim(q, o) ≤ min{dsim(q, p), p ∈ DB}

36 CHAPTER 2. SIMILARITY SEARCH

⇔ dsim(q, o) ≤ εnn

⇔ o ∈ simεnn
(q)

�

The above lemma shows that every nearest-neighbor query can

be transformed into a similarity range query, although the nearest-

neighbor distance εnn is generally not known in advance.

2.2.3 k-Nearest-Neighbor Query

The k-nearest-neighbor query is an extension of the nearest-neighbor

query in case, a result set with more than one element is desired.

An example of such a case is the functional classification of proteins.

To improve classification accuracy for nearest-neighbor classification,

a protein is not assigned to the functional class of the most similar

protein in the database but to the class of the majority of the k most

similar proteins. The idea of the k-nearest-neighbor query is illustrated

in figure 2.5.

Like the nearest neighbor for a query object, the k-th nearest neigh-

bor may not be unique and, therefore, the result of a k-nearest-neighbor

query may contain more than k elements.

Definition 2.4 (k-nearest-neighbor query) For every query object

q ∈ O and a query parameter k, the result of a k-nearest-neighbor query

is defined as

2.2. SIMILARITY QUERY TYPES 37

q

Figure 2.5: Result of a k-nearest-neighbor query for object q and

k = 5. The gray circle represents the equivalent range query.

simknn(q) = {o | o ∈ Nk(q) ⊆ DB ∧

∀o ∈ Nk(q),∀p ∈ (DB −Nk(q)) :

dsim(q, o) < dsim(q, p)}

Obviously, lemma 2.1 holds analogously for the k-nearest-neighbor

query which means that every k-nearest-neighbor query can also be

transformed into a similarity range query with the same result.

2.2.4 Similarity Ranking Query

A final important similarity query type is the similarity ranking query

which is needed in cases where the exact number of desired results is not

known in advance. The idea of this query type is to iteratively retrieve

the next closest objects of a query object from the database, starting

38 CHAPTER 2. SIMILARITY SEARCH

at the nearest neighbor. This type of query appears, for example when

the user interactively explores the database and retrieves the nearest

neighbors of a query object one after another. Such queries could be

done by issuing k-nearest-neighbor queries with increasing parameter

k. But this would result in retrieving the nearest neighbor and other

objects several times, i.e. again and again for each k-nearest-neighbor

query. Therefore, an algorithm for similarity ranking queries should

not start over again for each request of a new object and should not

perform all the similarity searching while processing the first request

to ensure interactive response times. Hijaltason and Samet presented

an algorithm with those properties in [HS95].

2.3 Efficient Similarity Search

The size of modern databases and the complexity of the similarity

searching task make efficiency an important issue for any similarity

search application. In this section, we will present two techniques to

speed up the query processing in similarity search applications. The

two techniques, the use of index structures, and the use of a multi-step

query processing architecture, are not meant to be mutually exclusive.

Instead, they can both be applied in parallel or at different stages of

the query processing.

2.3.1 Index Structures

The use of index structures is a standard technique to improve query

processing times in database systems. Numerous different index struc-

2.3. EFFICIENT SIMILARITY SEARCH 39

tures have been proposed for many different data types and applica-

tions. For similarity search in structured data two types of structures

are important: structures for high-dimensional vector spaces and for

metric spaces. The first category is useful whenever the feature vector

approach is used as similarity model, but we will see in the second part

of the thesis that it can also be applied to speed up certain subtasks

when using the distance-based similarity model.

Metric index structures, on the other hand, can be applied if the

distance-based similarity model is chosen, provided that the similarity

measure fulfills the metric properties. But especially for the distance-

based similarity model, where the similarity measure is often complex,

speeding up the query processing is essential.

In the following, we will present the principles of important index

structures for vector spaces as well as metric spaces.

Indexing Vector Spaces

The two main paradigms for index structures are hashing and tree

structures. While there exist hashing approaches for vector spaces

[NHS84, KS86], the vast majority of index structures for vector spaces

are hierarchical data organizing structures. The idea behind those

structures is to organize the vector data in a tree like directory to ensure

logarithmic time complexity of index updates and search accesses. To

achieve a tree structure for the index, the data vectors are grouped

into pages which are described by a page region covering the entire

subspace occupied by the data vectors on the page. The data pages

are grouped into directory pages in the same manner until this recursive

40 CHAPTER 2. SIMILARITY SEARCH

process yields a single root page. The many index structures following

this approach differ in the shape and size of the page regions, the

strategy for splitting pages and the insertion strategies. Examples of

index structures following this paradigm are, among many others, the

members of the R-tree family [Gut84, BKSS90], the X-tree variants

[BKK96, Sch99] and the IQ-tree [BBJ+00].

Indexing Metric Spaces

Index structures for metric spaces are more general than structures

for vector spaces in the sense that they can also be applied to vector

spaces, since every vector space is also a metric space. Like structures

for vector spaces, index structures for metric spaces also group the data

objects into data pages. But since there is only a distance measure

given between pairs of objects, no arbitrarily formed page regions are

possible. The limitation of the distance measure results in ball-shaped

or ring-shaped page regions. For the description of the page regions,

one or more representatives from the data objects together with a

radius have to be chosen. The many index structures for metric spaces

mainly differ in the way, those representatives are chosen. Examples of

index structures for metric spaces are GNAT [Bri95] or the family of

vantage-point trees [Uhl, Yia93, BÖ97]. Chávez et al. give an overview

over existing approaches for indexing metric spaces in [CNBYM01].

Since even in data mining applications regular updates of the data-

base are common, dynamic index structures for metric spaces are the

most important variants for our similarity search applications. The

M-tree [CPZ97] and its variant the Slim-tree [TTSF00] are specifically

2.3. EFFICIENT SIMILARITY SEARCH 41

designed to allow dynamic updates. Furthermore, those structures are

also designed to reduce the number of similarity distance calculations

which is especially important for complex similarity measures like they

are common for structured data. Therefore, we will compare our tech-

niques for efficient similarity search with the M-tree in the following

chapters.

2.3.2 Multi-step Query Processing

The complexity of the similarity distance measure is often a problem

for efficient query processing in similarity search applications. Index

structures are one way to exclude unnecessary parts of the database

from scanning, which reduces the number of necessary similarity dis-

tance calculations. Another way to reach this reduction goal is to

employ a multi-step query processing architecture.

To reduce the number of necessary distance calculations, the query

processing in a multi-step query processing architecture, as depicted

in figure 2.6, is performed in two or more steps. The first step is

a filter step which returns a number of candidate objects from the

database. For those candidate objects, the exact similarity distance

is then determined in the refinement step and the objects fulfilling

the query predicate are reported. To reduce the overall search time,

the filter step has to fulfill certain constraints. First, it is essential

that the filter predicate is considerably easier to evaluate than the

exact similarity measure. Second, a substantial part of the database

objects must be filtered out. Obviously, it depends on the complexity

of the similarity measure which filter selectivity is sufficient. Only if

42 CHAPTER 2. SIMILARITY SEARCH

filter
candidates

resultrefinement

Figure 2.6: Schema of a multi-step query processing architecture.

both conditions are satisfied, the performance gain through filtering is

greater than the cost for the extra processing step.

Additionally, the completeness of the filter step is essential. Com-

pleteness in this context means that all database objects satisfying the

query condition are included in the candidate set or in other words,

it must be guaranteed that no false drops occur during the filter step.

Available similarity search algorithms guarantee completeness if the

distance function in the filter step fulfills the lower-bounding property.

Definition 2.5 (lower-bounding property) For any two objects p

and q, a lower-bounding distance function dlb(p, q) in the filter step has

to return a value that is not larger than the exact distance de of p and

q, i.e. ∀p, q : dlb(p, q) ≤ de(p, q).

With a lower-bounding distance function it is possible to safely filter

out all database objects which have a filter distance larger than the

current query range, because the similarity distance of those objects

cannot be less than the query range.

Using a multi-step query architecture requires efficient algorithms

that actually use the filter steps. Agrawal, Faloutsos and Swami pro-

2.4. REQUIREMENTS FOR SIMILARITY MEASURES 43

posed such an algorithm for range queries [AFS93]. In [SK98] and

[KSF+98] multi-step algorithms for k-nearest-neighbor search were pre-

sented which are optimal in the sense that the minimal number of exact

distance calculations are performed during query processing. We em-

ploy the latter algorithms in order to ensure efficient query processing

whenever applying a multi-step query processing architecture.

2.4 Requirements for Similarity Measures

In the preceeding sections, we discussed several aspects of similarity

search applications. From those discussion, we can now derive a few

requirements which a similarity measure for structured data should

fulfill. All similarity measures in the second part of the thesis are

evaluated based on those requirements.

One requirement for a similarity measure for structured data is that

structural as well as content-related information has to be taken into

account. Therefore, the measure should be defined also for attributed

graphs and not only for simple graphs.

In section 2.1.4, we showed that the similarity measure should be

adaptable to the needs of specific applications and to the needs of the

users. This adaption should be possible between two queries without

negative effects on the performance of the query processing step.

Another requirement is closely related to the first one. It is neces-

sary to provide an explanation of the similarity distance value between

two data objects, to allow the user a purposeful and easy adaption of

the parameters of the similarity distance measure.

44 CHAPTER 2. SIMILARITY SEARCH

The final two requirements are concerned with the efficiency of the

query processing in similarity search applications. First, the measure

should be of moderate time complexity, since it has to be evaluated

often, especially in today’s large and fast growing databases. Finally,

a similarity distance measure should be a metric in order to allow the

use of index structures and multi-step query processing techniques.

2.5 Conclusion

In this chapter, we discussed several aspects of similarity search ap-

plications. In the beginning, we presented two different models for

the similarity of objects, namely the feature vector approach and the

distance-based model. We discussed the strengths and weaknesses of

those models and showed that the distance-based model has advan-

tages especially for structured data. Furthermore, the problems of

invariance against transformations and of adaptability to application

and user needs were discussed.

Afterwards, we presented query types which are important in sim-

ilarity search applications. Those query types form the basis for the

evaluation of the similarity measures in the later chapters. Two differ-

ent techniques to ensure efficient query processing were presented in

section 2.3.

Finally, the discussions lead to five requirements which a similar-

ity measure for structured data should fulfill in order to be useful in

modern database systems.

Part II

Similarity of Structured

Data

45

Chapter 3

Similarity Measures for

Graphs

Graphs are a very universal and flexible data model and are used in

many different application domains. This fact lead to the development

of several similarity measures for graphs, which are optimized for dif-

ferent applications and graph types. In this chapter we will discuss

such similarity measures for structured data from the literature. The

focus of the discussion will be on the requirements for similarity mea-

sure that we defined in the preceeding chapter and on the universal

usability of the measure for many graph types and applications.

3.1 Measures for Graphs

There exist several similarity measures for graphs. They differ in the

types of graphs for which they are defined and whether they take at-

47

48 CHAPTER 3. SIMILARITY MEASURES FOR GRAPHS

tribute information into account or not. But most of the measures

have one thing in common, which is that they are based on some sort

of edit operations. The basic idea of all those measures is to define

the similarity of graphs based on the effort needed to make the graphs

identical. This effort is measured in number of primitive operations

which are needed to make the graphs identical. In the following sec-

tions will present the similarity measures for graphs from the literature

and discuss, how the different approaches define the identity of graphs

and the effort to achieve it.

3.1.1 The Edit Distance for Graphs

The edit distance for graphs is an extension of the well known edit

distance for strings [Lev66, WF74] to graphs. Sanfeliu and Fu first

introduced the edit distance for attributed graphs in [SF83]. The edit

distance is a very common similarity measure for graphs and variants

of it have been used successfully in many application domains such as

face recognition [WFKvdM97] or object recognition [KKV90].

The edit distance between two graphs is the minimum number of

edit operations which are necessary to transform the graphs into each

other. Edit operations may be the deletion or insertion of vertices or

edges or the change of vertex or edge attributes. There exist many

variants of the edit distance for graphs which differ in the edit op-

erations that are allowed or whether attributes are considered or not.

Due to its great importance, we will discuss the edit distance for graphs

more thoroughly in chapter 4, where the edit distance is also defined

formally.

3.1. MEASURES FOR GRAPHS 49

3.1.2 The Measure of Papadopoulos and Manolo-

poulos

In [PM99] Papadopoulos and Manolopoulos present a similarity mea-

sure for graphs, which is also based on the concept of edit operations.

They propose three different primitive operations, which are vertex in-

sertion, vertex deletion and vertex update. While vertex insertions or

deletions have the obvious meaning, the update operation is needed to

insert or delete edges incident to a vertex. Additionally they introduce

the degree sequence of a graph, i.e. the non-increasing sequence of the

degrees of the vertices in a graph. The similarity distance between two

graphs is defined as the minimum number of primitive operations which

are required so that the two graphs have the same degree sequence.

To calculate the similarity measure, the sorted graph histogram

is introduced, which is a histogram of the degrees of the vertices in a

graph increased by one and sorted in non-increasing order. Papadopou-

los and Manolopoulos show that the L1-distance between two sorted

graph histograms equals their similarity distance of the corresponding

graphs. Additionally it is proven that the similarity distance satisfies

the metric properties.

Obviously, the sorted degree histograms of the graphs in a database

are of different dimensionality if not all graphs are of the same order.

To allow the use of index structures for vector spaces, Papadopoulos

and Manolopoulos introduce a histogram folding technique to achieve

a constant dimensionality of the histograms for all graphs. To create a

folded histogram from a sorted degree histogram, the maximum order

50 CHAPTER 3. SIMILARITY MEASURES FOR GRAPHS

} }}} }
hf

hs

Figure 3.1: The histogram folding technique of Papadopoulos and

Manolopoulos.

of all graphs in the database and in the queries has to be known in

advance. In the beginning the desired dimensionality n of the folded

histograms is fixed and for graphs with less vertices than this dimen-

sionality, the sorted degree histogram is simply padded with zeros. In

all other cases, a new folded histogram hf is deduced from a sorted

degree histogram hs by assigning the sum of the values in the first n-th

of the bins in hs to the first bin in hf and so on, until the sum of the

values in the last n-th of hs is assigned to the n-th bin of hf . Figure

3.1 illustrates the folding technique.

In [PM99] it is shown that the L1-distance of two folded histograms

is a lower bound for the L1-distance of the corresponding sorted degree

histograms. This allows to use the folded histograms in a filter step of

a multi-step query processing architecture. In chapter 6 we will present

an alternative folding technique for histograms, which does not require

the knowledge of the maximum order of all database and query graphs

in advance.

3.1. MEASURES FOR GRAPHS 51

Discussion

Obviously, the similarity measure of Papadopoulos and Manolopoulos

does not take attribute data into account. Furthermore, there is no ap-

parent way to integrate attribute information into the measure without

having to develop a new algorithm to calculate the measure. There-

fore, this similarity measure is only useful for non-attributed graphs,

where only the structure of the data objects influences the similarity

of the objects.

Adaptability to application and user needs is one of the require-

ments a similarity measure for structured data has to fulfill. Appar-

ently, the measure of Papadopoulos and Manolopoulos has no adapt-

able parameters and even the integration of a simple weighting scheme

for the primitive operations would require a new algorithm to cal-

culate the measure. The algorithm presented by Papadopoulos and

Manolopoulos does not allow to distinguish between the number of

different primitive operations which are necessary. Consequently, the

measure is adaptable neither to application requirements nor to user

needs.

An explanation of the similarity distance between two graphs could

be provided, since the measure is based on primitive operations. There-

fore, one sequence of primitive operations with minimal length, which

results in equal degree sequences, could be presented to the user. Un-

fortunately, the algorithm for calculating the similarity measure only

determines the number of necessary primitive operations, but no se-

quence of this length is acquired. Determining such a sequence would

require either a new calculation method for the measure or a separate

52 CHAPTER 3. SIMILARITY MEASURES FOR GRAPHS

processing step, which would influence the processing time negatively.

The time complexity of the similarity measure, is obviously linear

in the maximum order of the graphs. This low time complexity al-

lows to use the measure even for very large databases. Additionally, a

filter is available which can be used in a multi-step query processing

architecture to further enhance the processing time.

Finally, the measure fulfills the metric properties and, therefore,

index structures for metric spaces can be used in conjunction with this

measure.

Summarizing the discussion, it has to be stated that the similarity

measure for graphs by Papadopoulos and Manolopoulos fulfills some of

the requirements for similarity measures for attributed graphs. Never-

theless, it has severe shortcomings, which limit its usefulness to certain

graph types and applications.

3.1.3 The φ-distance Similarity Measure

Another similarity measure for graphs is proposed by Chartrand, Ku-

bicki and Schultz in [CKS98]. This measure is based on mappings

between the vertex sets of the graphs, which are compared, and is

defined for connected graphs of the same order.

Before the similarity measure can be defined, the φ-distance has to

be introduced.

Definition 3.1 (φ-distance) Let there be two connected graphs

G1(V1, E1) and G2(V2, E2) of the same order n and a one-to-one

3.1. MEASURES FOR GRAPHS 53

mapping φ : V1 7→ V2. The φ-distance between G1 and G2 is defined as

distφ(G1, G2) =
∑

|lp(u, v)− lp(φu, φv)|

where the sum is taken over all
(
n
2

)
unordered pairs u, v of distinct

vertices in G1 and lp(u, v) is the length of the shortest path between u

and v in G1.

The φ-distance similarity measure is defined as follows:

Definition 3.2 (φ-distance similarity measure) The φ-distance

similarity measure between two connected graphs G1 and G2 of the

same order is defined as:

dφ(G1, G2) = min{distφ(G1, G2) | φ is a one− to− one mapping

between V1 and V2}

Chartrand, Kubicki and Schultz show that the φ-distance similarity

measure is a metric, but they do not provide an algorithm for calculat-

ing the φ-distance similarity measure for graphs. Instead, they present

a lower bounding filter for the similarity measure. This filter is based

on the total distance td(G) of a connected graph G of order n, which

is defined as

td(G) =
∑

lp(u, v)

where the sum is taken over all
(
n
2

)
unordered pairs u, v of distinct

vertices of G. In [CKS98] it is shown that for any two connected graphs

G1 and G2 of the same order, the following holds:

|td(G1)− td(G2)| ≤ dφ(G1, G2)

54 CHAPTER 3. SIMILARITY MEASURES FOR GRAPHS

If G1 is a connected spanning subgraph of G2 it even can be shown

that

dφ(G1, G2) = td(G1)− td(G2).

Obviously, calculating the total distance of a graph is very time-

consuming, since
(
n
2

)
many pairs of vertices have to be considered. But

this calculation can be done in advance so that the total distance can

be used as filter value for a graph.

Nevertheless, the calculation of the exact φ-distance measure re-

mains a complex task, since there exist n! one-to-one mappings be-

tween the vertex sets of two graphs with order n. Even if an efficient

way to find an optimal one-to-one mapping would be known, the dis-

tance calculation would still have quadratic time complexity in the

order of the graphs.

Discussion

The φ-distance similarity measure is only defined for connected graphs

of the same order and does not take attribute information into account.

The integration of attribute information would be possible by using a

distance function which takes attribute information into account in-

stead of the lengths of paths between the pairs of vertices. The choice

of this distance function would have to be done carefully in order to

preserve the metric property of the φ-distance similarity measure. Nev-

ertheless, the limitation to connected graphs of the same order remains,

which limits the applicability of the φ-distance similarity measure to

special cases where the requirements are fulfilled.

3.1. MEASURES FOR GRAPHS 55

Additionally, the measure has no parameter and, therefore, cannot

be adapted to application requirements and user needs. Just like the

integration of attribute information, adaptability could be achieved

by introducing another distance function for vertex pairs. Again, the

choice of this function would have to done with special care to preserve

the metric properties.

When calculating the φ-distance similarity measure, the require-

ment of an explanation component could be fulfilled, if the calculation

algorithm also determines one of the mappings, which has minimum

cost. Obviously, this requirement is only sensible, if adaptability is

achieved through an appropriate new distance function.

Finally, the time complexity of the measure remains an open is-

sue. But since there is no algorithm with polynomial time complexity

known, which calculates the φ-distance similarity measure, a moderate

time complexity of this measure cannot be approved.

Therefore, the φ-distance similarity measure is limited to very spe-

cial applications providing data modeled as connected graphs with a

small and fixed order.

3.1.4 Similarity Based on the Maximal Common

Subgraph

Another similarity measure for attribute graphs was proposed by Bunke

and Shearer in [BS98]. Their similarity measure is based on the max-

imal common subgraph of the two graphs. A graph G is called a

common subgraph of two graphs G1 and G2, if it is a subgraph of G1

56 CHAPTER 3. SIMILARITY MEASURES FOR GRAPHS

and G2, respectively. A common subgraph G of two graphs G1 and

G2 is maximal if there exists no other common subgraph of G1 and G2

with a higher order than G. The maximal common subgraph of G1

and G2 is denoted by mcs(G1, G2). The similarity distance by Bunke

and Shearer is defined as follows:

Definition 3.3 (maximal common subgraph similarity distance)

The maximal common subgraph distance between two non-empty graphs

G1 and G2 is defined as

dmcs(G1, G2) = 1− |mcs(G1, G2)|
max{|G1|, |G2|}

It has to be noted that this similarity measure takes attribute informa-

tion into account, since a graph is only a subgraph if also the attribute

information is identical.

In [BS98] it is shown that the maximal common subgraph similar-

ity distance is metric. Unfortunately, the maximal common subgraph

problem is NP-complete [GJ79]. Consequently, determining the max-

imal common subgraph similarity distance between two graphs has

exponential runtime. An algorithm with worst case time complexity

of O(2n) has been presented also by Shearer and Bunke in [SB97].

Discussion

Other than the similarity measure of Papadopoulos and Manolopoulos

and the φ-distance similarity measure, the maximal common subgraph

similarity distance is defined for attributed graphs and is not restricted

to certain graph types.

3.1. MEASURES FOR GRAPHS 57

In [BS98], it is stated as a design goal for the development of the

measure to avoid the need for a cost function within the similarity

measure. As a reason for this, the complexity of choosing the best

cost function for edit distance based similarity measure is mentioned.

But because of the lack of any cost function, the maximal common

subgraph similarity distance cannot be adapted to specific applications

and user needs. This fact greatly limits the usability of the measure

for many applications.

An explanation for the similarity distance could be provided by

presenting the maximal common subgraph determined during the cal-

culation. But obviously, this is no longer an important requirement,

since the measure has no parameters which can be adapted.

While the measure fulfills the metric properties, it can only be

calculated with exponential time complexity. Therefore, it does not

fulfill the requirement of moderate computational complexity.

3.1.5 Error-Correcting Graph Matching

A problem closely related to similarity search in databases of attributed

graphs is graph matching. The term ’graph matching’ is used for the

task to find the model graph in a database which corresponds to a query

graph. Graph matching is used in face recognition [WFKvdM97], video

indexing [SB97] or schema matching [MGMR02].

In ideal situations, graph matching is equivalent to finding a model

graph which is isomorphic to the query graph, but in real applications,

the data is usually erroneous and incomplete. Consequently, the con-

cept of error-correcting subgraph isomorphism becomes important. It

58 CHAPTER 3. SIMILARITY MEASURES FOR GRAPHS

can be described informally as finding the most similar model graph

in the database with respect to a query graph. This task is equivalent

to a nearest neighbor similarity search.

In [Mes96], Messmer presents an algorithm for error-correcting sub-

graph isomorphism detection in databases of attributed graphs. The

algorithm is based on the idea to decompose the model graphs in the

database into smaller subgraphs and to represent the database graphs

in terms of those subgraphs. Subgraphs which are common to sev-

eral model graphs are stored only once. This recoding of the database

graphs is done in a preprocessing step and should be repeated each

time, significant parts of the database are updated, to ensure con-

sistent query response times. During query processing, the subgraph

isomorphism determination can be greatly simplified, since matchings

with common subgraphs have to be calculated only once.

Discussion

While error-correcting graph matching is related to the problem of

nearest neighbor similarity search, the approaches from this domain

are no alternative for similarity measures for attributed graphs. Since

all the approaches are optimized to solve only the nearest neighbor

problem, other similarity query types are not directly supported. Fur-

thermore, the underlying problem of subgraph isomorphism is NP-

complete and, therefore, all exact graph matching algorithms have ex-

ponential time complexity, which prohibits their application to large

and even growing databases.

Additionally, many graph isomorphism algorithms are based upon

3.2. SIMILARITY MEASURES FOR TREES 59

the edit distance, which can be used directly as similarity measure for

attributed graphs.

3.2 Similarity Measures for Trees

It is obvious that every similarity distance measure for attributed

graphs can also be used for attributed trees. Nevertheless, several spe-

cialized similarity measures for attributed trees have been presented

in the literature. One reason for this is the great importance of tree

structured data in practice and another reason probably is the high

computational complexity of most known similarity measures for at-

tributed graphs. Furthermore, similarity search in tree structured data

often requires to take special properties of tree structured data into ac-

count. For example, it is usually more important for the similarity of

the data objects that the structure and attributes near the root of the

tree are similar to each other, than at the leaf level.

Due to the great importance of tree structured data in practice, we

will thoroughly discuss similarity measures and efficient query process-

ing techniques for tree structured data in chapter 6.

60 CHAPTER 3. SIMILARITY MEASURES FOR GRAPHS

Chapter 4

The Edit Distance

The most common similarity measure for graphs is certainly the edit

distance. This has several reasons. First, it is a very intuitive measure,

which means that the user can easily understand how the distance be-

tween two objects comes about. As a consequence, the user can adapt

parameters systematically if the results of a similarity search are not

satisfying. This allows to apply the edit distance in a broad range of

applications and strengthens the trust of the user in the results. Fur-

thermore, the calculation of the edit distance also produces a mapping

between the vertices of the two compared graphs, which can be visu-

alized for the user. This supports the user in the often explorative

similarity search process and again, in adapting the necessary param-

eters. Another property of the edit distance which also increases its

adaptability for different applications and users, is the fact that many

variants of the edit distance are available. Those variants are based

on different weights for the edit operations, a restriction of the allowed

edit operations, or on a combination of those two techniques.

61

62 CHAPTER 4. THE EDIT DISTANCE

Because of the importance of the edit distance as a similarity mea-

sure for graphs, we will investigate it more thoroughly in this chapter.

After defining the edit distance formally, we will present its important

properties and discuss some of its variants. Finally, we will present

some results on the time complexity of calculating the edit distance

and present an algorithm to calculate this measure.

4.1 The Edit Distance Between Attribu-

ted Graphs

While the edit distance is a very intuitive measure, it is nontheless

necessary to define exactly what we mean by the term ’edit distance’

between attributed graphs. This is especially important to understand

the numerous variants and their specific properties.

Important concepts for the definition of the edit distance are single

edit operations and sequences of edit operations.

Definition 4.1 (edit operation, edit sequence) Let G = (V, E)

be an attributed graph. An edit operation is the insertion, the deletion

or the change of a label (relabeling) of a vertex or edge in G. The in-

sertion of a vertex or edge x is denoted by (λ → x), the deletion of x is

denoted by (x → λ) and the relabeling of x to y is denoted by (x → y).

An edit sequence S is a sequence of edit operations, S = 〈e0, . . . , em〉,
which can be applied to G. The result of the application of an edit

sequence S to a graph G, S(G), is an edited graph G′.

An important detail of this definition is that a single relabeling can

4.1. DEFINITION 63

change the entire label vector of a vertex or edge. Consequently, a

single edit operation can change several data values associated with

a vertex or node. The next step towards the definition of the edit

distance is a cost function for the edit operations. Most variants of the

edit distance differ in the cost function they use.

Definition 4.2 (edit cost funtion) Each edit operation e is assigned

a non-negative cost c(e). The cost of a sequence of edit operations

S = 〈e0, . . . , em〉, c(S), is defined as the sum of the cost of each edit

operation in S, i.e. c(S) =
∑m

i=0 c(ei).

Before we can define the edit distance, we also have to introduce the

concept of graph isomorphism which provides some sort of equivalence

of graphs.

Definition 4.3 (graph isomorphism) Two graphs G1 = (V1, E1)

and G2 = (V2, E2) are isomorphic, denoted by G1
∼= G2, if there is

a bijection M ⊆ V1 × V2 such that for every pair of vertices vi, vj ∈ V1

and wi, wj ∈ V2 with (vi, wi) ∈ M and (vj, wj) ∈ M , (vi, vj) ∈ E1 if

and only if (wi, wj) ∈ E2. In such case, M is a graph isomorphism of

G1 and G2.

Two attributed graphs G1 and G2 are called isomorphic if there exists a

graph isomorphism M of G1 and G2 and the attributes associated with

corresponding vertices and edges in M are identical, too.

Now, we are finally able to define the edit distance between at-

tributed graphs.

64 CHAPTER 4. THE EDIT DISTANCE

G1 G2

B C

A D

C

A

C

δedit
�
G1�G2��4

Figure 4.1: Simple edit distance between two graphs. The distance

is calculated with unit cost for all edit operations.

Definition 4.4 (edit distance) The edit distance between two at-

tributed graphs G1 and G2, dedit(G1, G2), is the minimum cost of all

edit sequences S that make G1 and G2 isomorphic:

dedit(G1, G2) = min{c(S)|S(G1) ∼= G2}

Figure 4.1 illustrates the idea of the edit distance between two

graphs G1 and G2. Edges and vertices touched by a dashed line are

assigned to each other which means that they have to be relabeled if

they do not carry the same label. All vertices and edges not touched

by a dashed line have to be inserted or deleted, respectively.

In the following we call the basis of all variants of the edit distance

4.1. DEFINITION 65

’simple edit distance’. The simple edit distance is uniformly weighted

which means that every edit operation is assigned the same cost, which

is usually 1. An important property of the simple edit distance and

the reason why it is called edit distance is presented in the following

theorem. For the theorem it is important to recall that we consider

two graphs as identical, if they are isomorphic.

Theorem 4.1 The simple edit distance for attributed graphs is a met-

ric.

Proof. Let G1, G2 and G3 be attributed graphs. To proof the theorem,

we have to show the three metric properties:

1. dedit(G1, G2) ≥ 0 and dedit(G1, G2) = 0 ⇔ G1 = G2 (positivity

and definiteness):

As the cost for an edit operation is positive, the cost for every

edit sequence and, therefore, the edit distance between any two

graphs is always positive. As two graphs can only have an edit

distance of zero, if they are isomorphic, the second condition is

also fulfilled.

2. dedit(G1, G2) = dedit(G2, G1) (symmetry):

Assume that dedit(G1, G2) 6= dedit(G2, G1). In this case, there ex-

ists an edit sequence S1 = 〈e0, . . . , em〉 with S1(G1) ∼= G2 and

c(S1) = dedit(G1, G2) 6= dedit(G2, G1). Without loss of general-

ity, we assume that c(S1) < dedit(G2, G1). We construct an edit

66 CHAPTER 4. THE EDIT DISTANCE

sequence S2 = 〈e′0, . . . , e′m〉, with

e′i =


(b → a) , if em−i = (a → b)

(a → λ) , if em−i = (λ → a)

(λ → b) , if em−i = (b → λ)

The edit sequence S2 is the reversion of sequence S1. As S1(G1) ∼=
G2, it is obvious that S2(G2) ∼= G1. For the simple edit distance,

it is clear that c(S1) = c(S2) ≥ dedit(G2, G1) which contradicts

the assumption.

3. dedit(G1, G3) ≤ dedit(G1, G2) + dedit(G2, G3) (triangle inequality):

Assume that dedit(G1, G3) > dedit(G1, G2) + dedit(G2, G3). For

each pair of graphs Ga and Gb there exists a cost minimal edit se-

quence S with S(Ga) ∼= Gb. Therefore, there must exist cost min-

imal edit sequences S1, S2 and S3 with S1(G1) ∼= G3, S2(G1) ∼= G2

and S3(G2) ∼= G3 and c(S1) > c(S2)+c(S3). But the edit sequence

S4 = S2S3, c(S4) = c(S2)+c(S3) obviously also makes G1 and G3

isomorphic, i.e S4(G1) ∼= G3. This means that c(S2) + c(S3) =

c(S4) < c(S1) which contradicts the fact that S1 is cost minimal.

�

4.2 Variants of the Edit Distance

As already mentioned, several variants of the edit distance exist. In

this section, we will further investigate a few important examples of

those variants.

4.2. VARIANTS OF THE EDIT DISTANCE 67

4.2.1 Weighted Edit Distance

The simplest and most common variant of the edit distance is the

weighted edit distance. It differs from the simple edit distance in the

cost function for edit operations. While for the simple edit distance,

each edit operation is assigned the same cost, in the weighted case, the

cost for insertion, deletion and relabeling operations can differ. It is

even possible that the cost for an edit operation depends on the indi-

vidual objects involved in the edit operation. The cost for a relabeling,

for example, may be proportional to how much the values of the labels

are changed.

The use of a weighted edit distance allows to adapt the similarity

measure for individual applications and users, but for efficient simi-

larity search, certain properties should be fulfilled by the similarity

measure. One of those is the metric property which is a precondition

to efficient similarity search algorithms. This raises the question, which

properties a cost function for edit operations must have, in order to

ensure the metric property of the weighted edit distance.

Theorem 4.2 Only if the cost function c fulfills the following two con-

ditions, the resulting weighted edit distance can be a metric:

1. for all edit operations e : c(e) > 0

2. The cost for deletion and insertion of an object x are identical.

Proof. To proof the theorem, we show that the weighted edit distance

looses the metric properties if the cost function violates any of the above

mentioned properties:

68 CHAPTER 4. THE EDIT DISTANCE

1. for all edit operation e : c(e) > 0:

Assume that this property is violated. The cost function has to

be non-negative by definition (see definition 4.2). Therefore, this

property can only be violated if there exists an edit operation e

with c(e) = 0. But then, it is possible to construct two graphs G1

and G2 with G1 6∼= G2 and e(G1) ∼= G2. This means that G1 and

G2 are not isomorphic but have an edit distance of zero. This

violates the metric property of definiteness.

2. The cost for deletion and insertion of an object x are identical:

Assume that this property is violated. This means that the op-

eration e of inserting a vertex or edge x, e = (λ → x), and the

operation e′ of deleting the same vertex or edge x, e′ = (x → λ),

are not assigned the same cost, i.e. c(e) 6= c(e′). Obviously, it

is possible to construct two graphs G1 and G2 with G1 6∼= G2,

e(G1) ∼= G2 and G1
∼= e′(G2), as the insertion and the deletion

of an object are inverse operations. But this means that:

dedit(G1, G2) = c(e) 6= c(e′) = dedit(G2, G1)

Consequently, an edit distance based on such a cost function does

not fulfill the metric property of symmetry.

�

4.2.2 Edit Distance for Trees

In practice, trees are probably the most important subset of graphs,

since many data objects have a hierarchical structure. This includes

4.2. VARIANTS OF THE EDIT DISTANCE 69

XML documents, chemical compounds and content-oriented image data.

The edit distance for graphs can also be used to measure the similarity

of trees, as every tree is also a graph. But often this is unwanted, as

in this case the special properties of tree structured data are not taken

into account. One such property is the fact that edges in trees usually

do not carry any attributes but serve only as a representation of the

hierarchical relationship between vertices. Therefore, edit operations

for the edit distance for trees are only defined for vertices. The edges

adjacent to an edited vertex are implicitly changed.

Additionally, insert and delete operations have to be defined in a

different way than for graphs. This is due to the fact that trees are

always connected and, therefore, the definition of an insert or delete

operation has to ensure that a tree remains connected after the op-

eration. This can be guaranteed if the definition of the deletion of

non-leaf vertex v implies the deletion of the entire subtree rooted at

v. Obviously, such a definition does not yield a useful similarity mea-

sure, because with this measure every two trees could be transformed

into each other with a maximum of two edit operations. This could

be done by deleting the root of one tree and afterwards inserting the

entire other tree. Therefore, the insertion and deletion of vertices in a

tree are usually defined in the following way:

Definition 4.5 (edit operations for trees) Let t be an attributed

tree and p a vertex within t. Through the insertion of a vertex n below

p, n becomes a successor of p and the elemnts of a subset of p’s suc-

cessors become successors of n. A deletion is the reverse operation of

an insertion.

70 CHAPTER 4. THE EDIT DISTANCE

In chapter 6 we will discuss the edit distance for trees and demon-

strate how large databases of tree structured objects can be queried

efficiently.

4.2.3 The Measure of Papadopoulos and Manolo-

poulos

The similarity measure for graphs from Papadopoulos and Manolopou-

los [PM99], as already described in section 3.1.2, also represents a spe-

cial form of edit distance. But in contrast to the measures presented

in the previous sections, they do not define an insert or delete opera-

tion for edges, but introduce a vertex update operation. Consequently,

the deletion of a single edge takes two edit operations which are the

update operations for the two incident vertices. Consequently, graphs

with different size are considered less similar with Papadopoulos’ and

Manolopoulos’ measure than with the normal edit distance. Addition-

ally, the measure is only defined for non-attributed graphs. While this

problem could be solved by introducing an appropriate relabeling op-

eration, the resulting measure would be incompatible with the efficient

search methods presented in [PM99].

4.3 The Time Complexity of the Edit Dis-

tance

In the context of database systems, the computational complexity of

a similarity measure is of great interest. As in a database system

4.3. THE TIME COMPLEXITY OF THE EDIT DISTANCE 71

thousands or even millions of objects are stored, the similarity measure

potentially has to be evaluated very often during the processing of a

single similarity query. The efficiency of the query process is greatly

influenced by how fast those evaluations can be made.

While there are many different types of edit distance functions,

they all have one aspect in common: They all measure the cost for

making the compared graphs isomorphic. Therefore, it makes sense to

investigate the problem of graph isomorphism before considering the

computational complexity of the edit distance as a whole.

4.3.1 Graph Isomorphism

The problem of graph isomorphism is a long studied problem in math-

ematics and computer science. It is the problem to decide if two graphs

are isomorphic according to definition 4.3.

The computational complexity of the graph isomorphism problem

has been intensely studied [KST93], but so far, it was neither possi-

ble to classify it as NP-complete nor to be within P. Jacobo Torán

showed in [Tor00] that the graph isomorphism problem is hard under

logarithmic space many-one reductions for several complexity classes.

While this gives an idea of the complexity of the problem, the general

question on the complexity of the graph isomorphism problem remains

unanswered. Valiente states that ’[...] graph isomorphism is one of the

few NP problems believed neither to be in P nor to be NP-complete.’

([Val02], p.354). To sum up, there is no algorithm with polynomial

runtime for the general graph isomorphism problem known.

For some graph classes more efficient algorithms have been pre-

72 CHAPTER 4. THE EDIT DISTANCE

sented. Examples are planar graphs [HT71], graphs with bounded de-

gree [Luk82] or graphs with limited eigenvalue multiplicity [BGM82].

However, the general problem remains unsolved.

4.3.2 Time Complexity of the Edit Distance

The fact that the graph isomorphism problem is computationally very

complex, has immediate consequences for the complexity of the edit

distance problem. As only isomorphic graphs have an edit distance

of zero, an efficient algorithm for the edit distance would also provide

an efficient isomorphism test for graphs. Consequently, it is not sur-

prising that no efficient algorithm for determining the edit distance

between graphs is known. Quite to the contrary, Zhang and colleagues

[ZSS92, ZJ94] showed that computing the edit distance between un-

ordered trees is MAX SNP-hard which means that it has no polynomial

approximation scheme unless P = NP .

But especially in similarity search, it is of great importance that the

similarity measure can be evaluated efficiently, as the measure typically

has to be evaluated for a large number of objects during one search

run. As common data mining techniques issue one similarity query for

each database object in the worst case, it becomes clear that the com-

plexity of the edit distance is too high. Consequently, techniques that

reduce the complexity of the query processing become indispensible

when using the edit distance.

A first simple approach to reduce the complexity of the similarity

search process when using the edit distance, is to limit the size and

order of the graphs. As the worst-case time complexity of an edit

4.3. THE TIME COMPLEXITY OF THE EDIT DISTANCE 73

distance calculation is exponential in the order of the graphs, reducing

the order of the graphs in the database would drastically reduce the

query evaluation time. But obviously, this approach is unattractive

because a limitation of the graph order would also limit the amount

of information that can be stored in the graphs. This results in very

coarsely modeled database objects and, consequently, in a coarse and

often inappropriate similarity model. Apart from that, the number

and complexity of the edit distance calculations is not reduced by this

approach.

The use of a completely different similarity measure, other than the

edit distance, can also be considered. We will thoroughly investigate

this possibility in chapter 7. As described there, other measures also

have certain shortcomings and, therefore, other techniques to reduce

the complexity of the similarity distance calculations are called for.

A possibility to reduce the number of edit distance calculations

during query processing and together with this, the query runtime,

is the use of index structures. Most index structures, like the B-tree

[BM72], require a complete ordering of the data set or that the data

space is a vector space. Examples of the latter category are the many

index structures for high-dimensional data, like the R-tree [Gut84],

the X-tree [BKK96] or the VA-file [WSB98]. Unfortunately, attributed

graphs together with the edit distance do not form a vector space, but

as theorem 4.1 shows, they form a metric space. This allows us to use

index structures for metric spaces, like the M-tree [CPZ97] or one of

the vantage-point approaches, for example from [Bri95] or [BÖ97], to

speed up similarity search in large databases of attributed graphs with

74 CHAPTER 4. THE EDIT DISTANCE

edit distance as similarity measure. To our best knowledge, the M-tree

is the only fully dynamic index structure for metric spaces. But as

we will show in section 5.3, the use of the M-tree does not reduce the

number of necessary distance calculations far enough to allow the use

of this similarity measure in large databases of tree-structured objects.

All the above mentioned techniques to reduce the complexity of

similarity query processing in conjunction with the edit distance have

major drawbacks. Therefore, we follow a different approach based on

the concept of multi-step query processing, as described in 2.3.2. The

necessary filter methods are presented in the following chapter.

4.4 Determining the Edit Distance

Since no efficient algorithms for the calculation of the edit distance

are known, general algorithmic paradigms have to be applied to this

problem. Dynamic programming and search techniques are common

paradigms used to calculate the edit distance between graphs. Here we

present a solution based on a search technique, which means we have

to find the cost-minimal edit sequence that makes the two compared

graphs isomorphic within the space of all possible edit sequences.

The basic idea of the algorithm is to find a mapping between the

vertices and edges of the two graphs that are compared. All vertices

and edges mapped to a corresponding vertex or edge in the other graph

have to be relabeled, while vertices and edges without a partner in the

other graph have to be inserted or deleted, respectively. Starting with

an empty edit sequence, we generate all possible extensions of the

4.4. DETERMINING THE EDIT DISTANCE 75

EDIT DISTANCE(Graph G1, Graph G2){
PriorityQueue sequenceQueue;

init sequence queue();

while (complete sequence not found){
s = remove best sequence(sequenceQueue);

while (extensions left){
es = extend(s);

sequenceQueue.insert(es,cost(es));

}
}

}

Figure 4.2: Algorithm for calculating the edit distance between two

graphs

current edit sequence and determine their edit cost. The edit sequence

with the minimal cost so far is the next one to be extended. This

procedure is repeated until all vertices and edges of the smaller graph

have either been mapped to a partner or been marked for insertion or

deletion. Figure 4.2 shows the algorithm in pseudo-code.

This algorithm returns a cost-minimal edit sequence between G1

and G2. This is ensured by choosing the best edit sequence created

so far at every stage, and because the algorithm does not terminate

before an edit sequence that makes G1 and G2 isomorphic has been

found. Obviously, this algorithm is fast for graphs which have a small

edit distance, or in other words, which are similar. For rather dis-

similar graphs, the calculation can take very long. But this cannot

76 CHAPTER 4. THE EDIT DISTANCE

be completely avoided, because of the complexity of the edit distance

measure. Again, that is a reason why unnecessary calculations of the

edit distance should be avoided. All the methods presented in the

following chapters aim at avoiding unnecessary distance calculations.

A major advantage of the above algorithm is its great flexibility.

Depending on the exact form of the edit distance that is used as similar-

ity measure, only the cost for matching two vertices has to be adapted.

This means that all variants of the edit distance which we investigated

can be calculated with this one approach.

4.5 Summary

In this chapter we took a closer look at the edit distance for attributed

graphs as a similarity measure for structured data. We showed that the

simple edit distance is a metric and presented some conditions which

have to be fulfilled by the variants of the edit distance in order to be a

metric, too. Additionally, we presented an algorithm which allows to

calculate the edit distance and most of its variants. Furthermore, we

described some important variants of the edit distance and discussed

the computational complexity of the measure. It turns out that the

edit distance for graphs is a very common, but extremely complex

similarity measure. Therefore, it is necessary to develop alternatives

and to speed up the query processing step in order to allow for efficient

similarity searching in structured data.

Chapter 5

Efficient Similarity

Search with the Edit

Distance

In the previous chapter, we saw that the edit distance for attributed

graphs fulfills almost all of the requirements of a similarity measure

which we defined in chapter 3. But unfortunately, the time complexity

of the edit distance and its variants is extremely high. In this chapter

we will present some techniques to allow efficient similarity search in

large databases with the edit distance as similarity measure.

77

78 CHAPTER 5. EDIT DISTANCE SIMILARITY

5.1 Handling the Computational Complex-

ity

There are several ways to deal with similarity measures of high compu-

tational complexity. A simple one is to reduce the problem size which

means in our case to limit the size and order of the graphs. Obviously,

this approach has many disadvantages, since it is not possible to limit

the size and order of the object graphs in every application. Besides,

this approach does not scale well, because a larger database would

require even smaller graphs to maintain acceptable runtimes which

eventually leads to a graph that does no longer contain sufficient in-

formation. Therefore, the limitation of the graph size and order can

only be applied in special cases.

Another way to tackle the complexity problem is to use a com-

pletely different data model instead of attributed graphs for which

similarity measures with lower time complexity are known. But as

we already discussed in chapter 1, this is often undesirable or even

impossible.

A promising approach is the use of index structures in order to

reduce the number of necessary edit distance calculations. Obviously,

only index structures for metric spaces have to be considered, as the

edit distance and attributed graphs only form a metric space but no

vector space. In section 2.3.1, such index structures are described.

While the use of an index structure reduces the number of necessary

distance calculation, this approach still suffers from the time complex-

ity problem in a special way. All the index structures for metric spaces

5.1. HANDLING THE COMPUTATIONAL COMPLEXITY 79

are based on the same idea. Certain objects from the database are cho-

sen as routing objects and during the query processing the distance to

at least some of the routing objects have to be determined. Especially

in the beginning of the index traversal, when the search space has not

yet been narrowed very much, the routing objects are often far away

from the query object. But determining the edit distance of graphs

which have a high edit distance is much more expensive than determin-

ing the edit distance for graphs which are close together. This is due

to the fact that all algorithms for calculating the edit distance have to

solve a search problem in the solution space. Solving this search prob-

lem takes longer if the solution is further away from the starting point

of the search which means for the calculation the edit distance that it

takes longer to calculate edit distances which are higher. We measured

computations times of over one hour for one distance calculation be-

tween distant graphs in our experiments. Computation times in this

order make a metric index structure practically useless for similarity

search in large databases.

Consequently, the goal is not only to reduce the number of distance

calculations, but also to carry out only distance calculations which can

be done quickly, if possible. In similarity search applications, the task

is usually to find objects which are close to the query object. Therefore,

only calculations of short distances are unavoidable and our goal is at

least theoretically reachable.

To achieve it, we propose a multi-step query processing architecture

with a filter step and a refinement step, as described in 2.3.2. This

approach has the great advantage that the edit distance has to be

80 CHAPTER 5. EDIT DISTANCE SIMILARITY

calculated only for objects which passed the filter step and, therefore,

are already close to the query object.

5.2 Filters for the Edit Distance

To take advantage of the benefits of a multi-step query processing ar-

chitecture, we need effective and efficient filter methods for attributed

graphs with the edit distance as similarity measure. To ensure that a

broad range of applications can profit from the speed-up of the filter-

refinement architecture, we developed filters for the simple edit dis-

tance as well as the weighted edit distance.

5.2.1 Filters for the Simple Edit Distance

To be effective, a filter for the edit distance has to take the structure

as well as the content information of attributed graphs into account.

There are several features to describe different aspects of the graph

structure, like the order and size or the number of connected com-

ponents. For the edit distance, two of those features are of special

interest: the size and the order of a graph. Since the edit distance

of two graphs is the minimum number of edit operations to make the

two graphs isomorphic, the difference in size and order of the graphs

are both obvious lower bounds for the edit distance. Therefore, we

store the order as well as the size of each graph in the database in a

two-dimensional feature vector.

Similar to the situation for structural information, a single fea-

ture value is usually not enough to represent the content information

5.2. FILTERS FOR THE EDIT DISTANCE 81

within a graph. Instead, the distribution of attribute values in graphs

is necessary to estimate the difference in content information and, con-

sequently, the edit distance between graphs. A common tool to rep-

resent a distribution of values are histograms and, therefore, we use

histograms to represent the content information in graphs. As iso-

morphic graphs have the same distribution of attribute values, the

difference between two attribute histograms can be used to measure

the similarity of graphs. We use the L1- or Manhattan distance as

distance measure between histograms. For two histograms H1 and H2

the distance of H1 and H2 is defined as

dL1
(H1, H2) =

n∑
i=1

|H1i −H2i|

with H1i and H2i being the components of the two n-dimensional his-

tograms. In conjunction with attribute histograms and the L1-distance

the special problem arises that a single relabeling operation can affect

two bins of an attribute histogram. This is the case when the relabeling

changes the attribute value so much that it is assigned to another bin.

Then the value in one histogram bin is decreased by one whereas the

value of another histogram bin is increased by one and the L1-distance

between the original and the new histogram is two. Figure 5.1 illus-

trates the situation. Since insert and delete operations obviously affect

exactly one attribute histogram bin, the L1-distance of two attribute

histograms has to be divided by two in order to be a lower bound for

the edit distance of the corresponding graphs.

Finally, all the filter distance values have to be combined in order to

result in a single filter distance for the two graphs which is still a lower

82 CHAPTER 5. EDIT DISTANCE SIMILARITY

B C DAB C DA

B

A

C B C

D

Figure 5.1: Example of two graphs that have an edit distance of 1

while their attribute histograms have an L1-distance of 2.

bound for the edit distance between the graphs. For this task, we could

use the maximum of all the filter distances. Since each of the filter

distance values is a lower bound for the edit distance, the maximum

of those values is also a lower bound for the edit distance. But it

is possible to derive a better overall filter value from the structural

feature vector and the attribute histogram distances.

An important observation in this context is that the change of an

attribute label can be achieved in two different ways. Of course, an

attribute value can be changed by a relabeling operation, but for ex-

ample the deletion of a vertex followed by the insertion of a new vertex

with different attribute values at the same position in the graph has

the same effect as a relabeling of the vertex. Therefore, an L1-distance

of x between the corresponding attribute histograms of two graphs

does not necessarily mean that x relabeling operations have to be per-

5.2. FILTERS FOR THE EDIT DISTANCE 83

formed in order to make the graphs isomorphic. Some of the required

attribute changes may also be achieved through insertions or deletions

of vertices and edges. Only if more attribute changes than insertions or

deletions are necessary, those surplus attribute changes can solely be

achieved through relabeling operations. Consequently, the number of

necessary deletions or insertions has to be subtracted from the number

of relabelings of an attribute. Fortunately, this information can be de-

rived from the structural feature vectors, as they contain the number

of vertices and edges in each graph.

Additionally, we have to take into account that a single relabeling

operation can change several attribute values that are associated with

a vertex or edge. This means that it is not possible to add all the

distances of the attribute histograms to determine the number of nec-

essary relabeling operations. But since the distances of the attribute

histograms for all attributes are lower bounding for the number of re-

quired attribute changes, the maximum of those attribute histogram

distances gives us a lower bound for the number of necessary attribute

changes. All the above considerations lead us to the following defini-

tion of a filter distance between attributed graphs for the simple edit

distance.

Definition 5.1 Filter for the component edit distance

dfilter(G1, G2) = dL1
(H1s, H2s) + max

i
{dvertex(H1V Ai

, H2V Ai
))}

+ max
i
{dedge(H1EAi

, H2EAi
))}

with

dvertex(H1V Ai
, H2V Ai

) =

{
dv = (1

2
· dL1(H1V Ai

, H2V Ai
))−#delv , if dv > 0

0 otherwise

84 CHAPTER 5. EDIT DISTANCE SIMILARITY

and

dedge(H1EAi
, H2EAi

) =

{
de = (1

2
· dL1(H1EAi

, H2EAi
))−#dele , if de > 0

0 otherwise

Here, H1s denotes the structural histogram of graph G1, H1V Ai

denotes the histogram for the i-th vertex attribute of G1 and H1EAi

is the same for edge attributes. #delv denotes the difference between

the number of vertices in G1 and G2 as derived from the structural

histograms. #dele has the corresponding meaning for edges.

The following lemma allows us to use our filter distance in a multi-

step query processing architecture.

Lemma 5.1 (Lower bounding property)

dfilter(G1, G2) ≤ dedit(G1, G2)

Proof. Let G1 = (V1, E1) and G2 = (V2, E2) be two attributed

graphs. dedit(G1, G2) is the minimal number of edit operations that

are necessary to make G1 and G2 isomorphic. Two isomorphic at-

tributed graphs have the same number of vertices and edges and the

attributes of corresponding vertices and edges are equal. Therefore,

the edit distance between G1 and G2 is greater than or equal to the

number of insertion or deletion operations such that |V1| = |V2| and

|E1| = |E2| plus the number of relabeling operations such that cor-

responding vertices and edges in G1 and G2 have the same attribute

vectors. The number of necessary insertion and deletion operations is

||V1| − |V2||+ ||E1| − |E2|| = dL1
(H1Ai, H2Ai).

The attribute vector of a vertex or edge can be changed in two ways.

Either by relabeling the vertex or edge or by deleting it and inserting

5.2. FILTERS FOR THE EDIT DISTANCE 85

it with the changed labels. Obviously, an insertion plus a deletion is

more expensive than a single relabeling. Thus, the number of neces-

sary relabelings for one attribute is certainly greater than or equal to

the number of attribute vectors in the two graphs that differ in this

attribute minus the number of deletions and insertions. This in turn

is greater or equal to dv = (1
2 · dL1

(H1V Ai, H2V Ai)) − #delv and de =

(1
2 · dL1

(H1EAi, H2EAi)) − #dele. Thus dfilter(G1, G2) ≤ dedit(G1, G2).

�

Obviously, the n attribute histograms and the structural feature

vector of a graph with n attributes can be concatenated and stored in

one feature vector. To search efficiently within such concatenated fea-

ture vectors, one of the well-known index structures for high-dimensional

spaces together with our filter distance function can be used.

5.2.2 Filters for the Weighted Edit Distance

Our filter function determines the minimal number of structural and

attribute mismatches between graphs. This allows us to extend it to-

wards a filter function for the weighted edit distance between graphs.

Even when a weighted edit distance is used, the above considerations

on the minimal number of edit operations necessary to match two

graphs are still valid. Therefore, the distance values for the partial his-

tograms just have to be multiplied with the appropriate weight factor.

Only the minimal number of vertex and edge insertions and deletions

has to be determined separately as they may have different weights.

But these values have to be determined anyway while calculating the

86 CHAPTER 5. EDIT DISTANCE SIMILARITY

filter distances for the relabeling operations. Thus, the filtering func-

tion for a weighted edit distance is as follows:

dWfilter(G1, G2) = w(delv) ·#delv + w(dele) ·#dele

+w(changeV Amax
) ·max

i
{dvertex(H1V Ai, H2V Ai)}

+w(changeEAmax
) ·max

i
{dedge(H1EAi, H2EAi)}

Here #delv denotes the difference between the number of vertices in

G1 and G2 for the graph matching and w(delv) denotes the respec-

tive weight factor. w(dele) and #dele are analogously defined for edge

changes. w(changeV Amax
) and w(changeEAmax

) represent the weights

for changing the vertex and edge attributes that require the most rela-

beling operations. This filtering distance is a lower bound for the edit

distance between two graphs under the assumption that a relabeling

operation is cheaper than a deletion operation followed by an insertion

operation. The proof, which is similar to the one for the simple edit

distance, is omitted here due to space limitations. This precondition

for the lower bounding property does not limit the applicability of our

method as it normally will be fulfilled. If it would not be fulfilled, each

relabeling operation would have to be replaced by a deletion followed

by an insertion when determining the minimal cost edit sequence. This

in turn would mean that labels have no meaning for the similarity of

the graphs in the application and hence a filter method for unlabeled

graphs should be used. This could be the L1-distance of the structural

histograms or the method presented in [PM99].

The filter distance function for the weighted edit distance can even

be improved if the sum of all weights for relabelings is guaranteed to

5.3. EVALUATION OF THE FILTER METHODS 87

be less than the cost for an insertion followed by a deletion. In this

case, it is guaranteed that no relabeling operation can be replaced by

a deletion and a subsequent insertion operation. This allows us to

use the following filter distance function while maintaining the lower

bounding property:

dWfilter(G1, G2) = w(delv) ·#delv + w(dele) ·#dele

+
∑
i

{w(changeV Ai
) · dvertex(H1V Ai, H2V Ai)}

+
∑
i

{w(changeEAi
) · dedge(H1EAi, H2EAi)}

An advantage of our approach is that the weights are only consid-

ered at the time of the distance calculation but not during the creation

of the feature vectors. This implies that the weights can be changed

between two queries without the need to rebuild the index. Therefore,

the notion of similarity can be changed by the user at query time by

adjusting the weight factors for the different edit operations without

any performance penalty.

5.3 Evaluation of the Filter Methods

To demonstrate the effectiveness and efficency of our filter methods, we

conducted several experiments. We implemented a multi-step query

processing architecture and tested our methods with the image re-

trieval application described in chapter 1. The experiments were car-

ried out with a database of 705 black-and-white pictographs and a

database of 8,536 commercially available full-color images. We imple-

mented all methods in Java and performed our tests on a workstation

88 CHAPTER 5. EDIT DISTANCE SIMILARITY

with a 2.4 GHz Xeon processor and 4GB of RAM.

The extraction of attributed graphs from the images in the databa-

ses was done in the same way as described in section 1.4.1. Each vertex

in a graph, representing a region of the corresponding image, was as-

signed the color, size, height and width of the region as attributes. The

values of the last three attributes were expressed as a percentage rela-

tive to the image size, height and width in order to make the measure

invariant to scaling.

Our experiments revealed that the very high computational com-

plexity of the edit distance prohibits to use this measure without any

efficient query processing technique. A comparison of our multi-step

query processing architecture with a metric index structure for exam-

ple was not possible, due to the excessive building time for the index.

After three days of computation time, the index creation was stopped.

We compared our approach with the measure suggested by Pa-

padopoulos and Manolopoulos for which also a filter method exists.

While the two approaches are based on different similarity measures,

a comparison is still able to demonstrate the effectiveness of the filter

methods for their measure, respectively. In order to measure just the

potential of the filter methods, no index structure was used for any of

the experiments.

In a first experiment, we measured the average number of candi-

dates that were returned by the filter step during an exact match query.

As can be seen in figure 5.2, our filter method rarely generates more

than one candidate even when using only concatenated histograms of

10 dimensions. The method presented in [PM99] generated candidate

5.3. EVALUATION OF THE FILTER METHODS 89

0

5

10

15

20

25

10 14 18 22 26

index dimension

nu
m

be
r o

f c
an

di
da

te
s

Papadopoulos/Manolopoulos edit filter

Figure 5.2: Average number of candidates for exact match queries

(color images).

sets with an average size of 22 in this experiment. As can be expected,

this factor drops to about 3.9 when the size of the histograms is step-

wise raised to 26 for both methods.

In order to compare the specificity of the two filter methods, we

measured the precision value for exact-match-queries. Precision is a

measure from the field of information retrieval that indicates which

percentage of the reported candidates is part of the answer set. It is

defined as the number of objects in the candidate set that are also in

the result set divided by the size of the candidate set. Since both filter

methods guarantee no false drops, this definition is equivalent to the

ratio of the size of the result set divided by the size of the candidate

set.

As can be seen in figure 5.3, our filter method reaches a precision

level of over 90% and that already with 10-dimensional histograms.

90 CHAPTER 5. EDIT DISTANCE SIMILARITY

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 14 18 22 26

index dimension

pr
ec

is
io

n

Papadopoulos/Manolopoulos edit filter

Figure 5.3: Average precision for exact match queries (color images).

The filter method of Papadopoulos and Manolopoulos reaches only a

precision value between 45% and 77% in this test. As expected, the

precision value increases with a growing number of index dimensions

for both filter methods.

In another experiment, we compared the filter efficiency of the two

approaches for a fixed histogram dimensionality and various query

ranges. The results are shown in figure 5.4. Naturally, the number

of candidates after the filter step increases with growing query range,

but for every query range, our filter method produces significantly less

candidates than the filter method of Papadopoulos and Manolopoulos.

For a query range of 4, the filter of Papadopoulos and Manolopoulos

produces as much as 11 times more candidates than our filter method

for the same number of exact results. This underlines the good filter

effectivity of our method.

The impact of weights on the edit distance is demonstrated in figure

5.3. EVALUATION OF THE FILTER METHODS 91

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5
query range

nu
m

be
r o

f c
an

di
da

te
s

Papadopoulos/Manolopoulos edit filter

Figure 5.4: Average number of candidates for various query ranges

and 26-dimensional histograms (color images).

5.5 and table 5.1 and 5.2. Table 5.1 shows the distances of the three

pictographs when using the simple edit distance, whereas table 5.2

shows the distances between the objects when using a weighted edit

distance.

In this example, the weights were chosen to make the change of the

(a) (b) (c)

Figure 5.5: An example of three similar pictographs

92 CHAPTER 5. EDIT DISTANCE SIMILARITY

color attribute and the size attribute cheaper. Obviously, the mutual

distance decreases with these weights. As changing the color attribute

of a vertex becomes cheaper, the distance between picture (a) and

picture (c) decreases more than the other distance values. But still,

the distance between the picture (a) and (c) is larger than between

picture (b) and (c).

edit distance without weights Pic. (a) Pic. (b) Pic (c)

Pic. (a) 0 19 20

Pic. (b) 19 0 14

Pic. (c) 20 14 0

Table 5.1: Edit distance of the pictographs in figure 5.5.

edit distance without weights Pic. (a) Pic. (b) Pic (c)

Pic. (a) 0 18 18.75

Pic. (b) 18 0 13

Pic. (c) 18.75 13 0

Table 5.2: Weighted edit distance of the pictographs in figure 5.5.

5.4 Conclusion

In this chapter, we presented an effective and efficient filter method

for similarity searching in graph databases with the edit distance as

similarity measure. Our filter methods and similarity measure are not

5.4. CONCLUSION 93

restricted to any special type of graph and also take the attributes

into account which are associated with the vertices and edges. The

effectiveness of our approach was demonstrated with experiments on

real data from a content-based image retrieval application. Our exper-

iments showed that the edit distance for attributed graphs can only

be used for similarity search in large databases in conjunction with an

effective technique to reduce the number of expensive edit distance cal-

culations. Our filter methods for a multi-step query processing archi-

tecture fulfill this requirement. For exact match queries, they achieve

a precision of over 90% even for histograms with only 10 dimensions.

We also showed that the use of a weighted edit distance is beneficial

for similarity search.

94 CHAPTER 5. EDIT DISTANCE SIMILARITY

Chapter 6

Similarity of

Tree-Structured Objects

Within structured data, tree-structured data is certainly the most im-

portant subtype. Hierarchically structured data, like XML-documents,

chemical compounds, web sites or even image data appears in many ap-

plication domains. While similarity search methods for general graphs

can always be used for tree-structured data, too, those techniques are

sometimes not sufficient. For example, it is necessary to ensure that

ancestor relationships, given implicitly by the tree structure, are taken

into account by the similarity measure. In this chapter we discuss some

similarity measures for tree-structured objects and present techniques

to ensure efficient query processing when using these measures. Our

techniques are thoroughly evaluated and tested with real-world data

from the domains of image retrieval and web-site mining. Parts of the

material in this chapter was published in [KKSS04].

95

96 CHAPTER 6. SIMILARITY OF TREES

6.1 Similarity Measures for Trees

Like for general graphs, there are several similarity measures for trees.

Here we will discuss three of those measures which are the edit distance

for trees, a measure based on tree alignment and the degree-2 edit

distance for trees. Conforming with definition 1.6 on page 11, we will

call the vertices of trees nodes in this chapter.

6.1.1 The Edit Distance for Trees

As already described in section 4.2.2, the edit distance for trees is a very

common similarity measure for trees. An edit distance for trees has to

take the special properties of trees into account. The most important

property is that trees are connected by definition. Therefore, the edit

operations have to be defined in a way to ensure that the result of an

edit operation applied to a tree is still a tree. Furthermore, in trees

usually only the nodes carry attribute information. This results in the

fact that for trees the only possible edit operations are the insertion,

deletion or relabeling of nodes. As the connectedness has to be ensured

at all times, the deletion of a node implicitly includes the deletion of

the necessary edge to its predecessor.

A major disadvantage of the edit distance for trees is its computa-

tional time complexity. As Zhang and colleagues showed [ZSS92, ZJ94],

the edit distance between unordered attributed trees is MAX-SNP-

hard and even for the edit distance between ordered trees, the best

known algorithm has a time complexity which is greater than the prod-

uct of the sizes of the compared trees. Clearly, such a complex measure

6.1. SIMILARITY MEASURES FOR TREES 97

is not suitable for similarity search in large databases without applying

techniques to avoid unnecessary distance calculations.

On the other hand, the advantages of the edit distance for graphs

apply here, too. Those are the intuitive definition, the implicit inter-

pretation of the similarity distance computed and the easy adaption

for specific application needs. Therefore, algorithms and methods to

improve the query processing time are highly desirable when the edit

distance for trees is used as similarity measure.

6.1.2 Tree Alignment

Another way to measure the similarity of attributed trees is the align-

ment of trees as presented by Jiang, Wang and Zhang in [JWZ94]. The

alignment of trees is an extension of the well known alignment of string

sequences [NW70, SM81, Got82]. The idea is to find a cost-minimal

overlay of two trees and use the cost of this overlay as measure for

the similarity of the two trees. The first step of an alignment of trees

is to insert nodes with empty labels into both trees to achieve trees

which are, apart from the node labels, identical. Then, the trees are

overlaid and the cost for this overlaying is computed. An example for

an alignment between two trees is depicted in figure 6.1.

The relationship between the edit distance and the alignment of

trees is different from the relationship between edit distance and align-

ment for strings. The edit distance between two strings is equal to the

value of an optimal alignment of the strings. In the case of trees, the

edit distance is a lower bound for the value of the optimal alignment of

the trees. This is due to the fact that an alignment of trees corresponds

98 CHAPTER 6. SIMILARITY OF TREES

A

B

D E

C

A

D

E C

F

(A, A)

(E, _) (C, C)(_, E)

(_, F)(B, _)

(D, D)

T2T1 alignment

Figure 6.1: An example of an alignment of the two trees T1 and T2.

to an edit sequence between those trees, where all insertions are done

before any deletions. In other words, tree alignment is a restricted

edit distance between trees. In [JWZ94], Jiang et al. state that tree

alignment seems to penalize structural dissimilarity at the top levels

of the trees more than at the lower levels. The edit distance on the

other hand, treats all levels equally.

For ordered trees, the authors present an algorithm with time com-

plexity O(|t1| · |t2| · (degree(t1) + degree(t2))
2), where |ti| means the

size of tree ti and degree(ti) is the maximal degree of a node in tree ti.

For unordered trees with a bounded degree, the algorithm has a time

complexity of O(|t1| · |t2|) while for unordered trees with unbounded

degree Jiang et al. proof that the alignment problem is NP-hard. Ob-

viously, the alignment of trees can be computed in polynomial time

for most relevant data, but the complexity is still very high. Apart

from that, we can see that a lower-bounding filter for the edit distance

is also lower-bounding for the alignment between trees and, therefore,

can be used in a multi-step query processing architecture to reduce

the number of expensive distance calculations; even if tree alignment

6.1. SIMILARITY MEASURES FOR TREES 99

is used as similarity measure.

6.1.3 The Degree-2 Edit Distance

A great advantage of using the edit distance is that along with the

distance value, a mapping between the nodes in both trees is provided

by the edit sequence. The mapping can be visualized and can serve as

an explanation of the similarity distance to the user. This is important

in the context of similarity search, where different users often have a

different notion of similarity in mind. Here, an explanation component

can help the user to adapt weights for the distance measure in order to

reflect the individual notion of similarity. But as already mentioned,

computing the edit distance between unordered labeled trees is NP-

complete [ZSS92], which makes it unsuitable for large databases. To

overcome this problem, Zhang [Zha96] proposed a constrained edit

distance between trees, the degree-2 edit distance. The main idea

behind this distance measure is that only insertions or deletions of

nodes with a maximum number of two neighbors are allowed.

Definition 6.1 (degree-2 edit distance) The degree-2 edit distance

between two trees t1 and t2, ED2(t1, t2), is the minimum cost of all

degree-2 edit sequences that transform t1 into t2 or vice versa. A degree-

2 edit sequence consists only of insertions or deletions of nodes n with

degree(n) ≤ 2, or of relabelings:

ED2(t1, t2) = min{c(S) | S is a degree2 edit sequence transforming

t1 into t2}

100 CHAPTER 6. SIMILARITY OF TREES

One should note that the degree-2 edit distance is well defined in the

sense that two trees can always be transformed into each other using

only degree-2 edit operations. The key observation in this context

is that every tree can be built and completely deleted by using only

degree-2 edit operations. When building a tree, this can for example be

achieved by inserting the nodes in depth-first or in breadth-first order.

As the deletion of a node is the reverse operation of the insertion,

deleting the nodes of a tree in reverse depth-first or reverse breadth-

first order ensures that the entire tree is deleted by using only degree-2

edit operations. Therefore, it is always possible to delete t1 completely

and then build t2 from scratch which results in a degree-2 distance

value for this pair of trees.

In [ZWS96] an algorithm is presented to compute the degree-2 edit

distance in O(|t1||t2|D) time, where D is the maximum of the degrees

of t1 and t2 and |ti| denotes the number of nodes in ti. Whereas this

measure has a polynomial time complexity, it is still too complex for

the use in large databases, especially if the size of the trees is large or

the maximum degree is high. To overcome this problem, we extend

the paradigm of filter-refinement architectures as presented in section

2.3.2 to the context of structural similarity search and propose a set of

filter methods for the edit distance and the degree-2 edit distance.

6.2. FILTERS FOR UNORDERED TREES 101

6.2 Structural and Content-based Filters

for Unordered Trees

In this section, we introduce several filtering techniques that support

efficient similarity search for tree-structured data. Whereas single-

valued features, including the height of a tree, the number of nodes

or the degree of a tree, are of limited use, as we learned from prelim-

inary experiments, we propose the use of feature histograms in order

to represent structural information of trees in a database. The advan-

tage of this extension is that more information is provided to the filter

step for the purpose of generating candidates and, thus, the discrimi-

native power is increased. Additionally, a variety of multidimensional

index structures like the R-tree [Gut84], the X-tree [BKK96] or the

VA-File [WSB98] and efficient search algorithms [RKV95, HS95] are

available for vector data including histograms. The particular feature

histograms which we propose in the following are based on the height

of the nodes in the tree and on the degree of individual nodes.

6.2.1 Filtering Based on the Height of Nodes

A promising way to filter unordered trees based on their structure is to

take the height of nodes into account. A very simple technique is to use

the height of a tree as a single feature. The difference of the height of

two trees is an obvious lower bound for the edit distance between those

trees, but this filter clearly is very coarse, as two trees with completely

different structure but the same height cannot be distinguished by this

filter.

102 CHAPTER 6. SIMILARITY OF TREES

Figure 6.2: A single insertion can change the distance to the root for

several nodes.

A more fine-grained and more sensitive filter can be obtained by

creating a histogram of node heights in a tree and using the difference

between those histograms as a filter distance. A first approach is to

determine the distance of each node in the tree to the root node and

then to store the distribution of those values in a histogram. Unfor-

tunately, the distance between two such histograms is not guaranteed

to be a lower bound for the edit distance or the degree-2 edit distance

between the original trees. As can be seen in figure 6.2, the insertion of

a single node may change the height of all nodes in its subtree. Thus,

the number of affected histogram bins is only bounded by the height

of the tree.

Therefore, we propose a different approach to consider the height of

a node. Instead of the distance of a node to the root, its leaf distance

is used to approximate the structure of a tree.

6.2. FILTERS FOR UNORDERED TREES 103

0 1 2

3 11

Figure 6.3: Leaf distance of nodes and leaf distance histogram.

Definition 6.2 (leaf distance) The leaf distance dl(n) of a node n

is the maximum length of a path from n to any leaf node in the subtree

rooted at n.

Based on this definition, we introduce the leaf distance histogram

of a tree. An example of a leaf distance histogram is depicted in figure

6.3.

Definition 6.3 (leaf distance histogram) The leaf distance histo-

gram hl(t) of a tree t is a vector of length k = 1 + height(t) where the

value of any bin i ∈ 0, . . . , k is the number of nodes that have the leaf

distance i, i.e. hl(t)[i] = |n ∈ t, dl(n) = i|.

For the proof of the following theorem the definition of a maximum

leaf path proofs to be helpful:

Definition 6.4 (maximum leaf path) A maximum leaf path (MLP)

of a node n in a tree t is a path of maximum length from n to a leaf

node in the subtree rooted by n.

104 CHAPTER 6. SIMILARITY OF TREES

0 1 2 3 4
3 1 1 1 0

An MLP of
the root node

Figure 6.4: A maximum leaf path.

An important observation is that adjacent nodes on an MLP are

mapped to adjacent bins in the leaf distance histogram as illustrated

in figure 6.4.

Theorem 6.1 For any two trees t1 and t2, the L1-distance of the leaf

distance histograms is a lower bound of the edit distance of t1 and t2:

L1(hl(t1), hl(t2)) ≤ ED(t1, t2)

Proof. Given two arbitrary trees t0 and tm, let us consider an edit

sequence S = 〈S1, . . . , Sm〉 that transforms t0 to tm. We proceed by

induction over the length m = |S|. If m = 0, i.e. S = 〈〉 and t0 = tm,

the values of L1(hl(t0), hl(tm)) and of c(S) both are equal to zero. For

m > 0, let us assume that the lower bounding property already holds

for the trees t0 and tm−1, i.e. L1(hl(t0), hl(tm−1)) ≤ c(〈S1, . . . , Sm−1〉).
When extending the sequence 〈S1, . . . , Sm−1〉 by Sm to S, the right hand

side of the inequality is increased by c(Sm) = 1.

6.2. FILTERS FOR UNORDERED TREES 105

The situation on the left hand side is as follows. The edit step Sm

may be a relabeling, an insert or a delete operation. Obviously, the

effect on the leaf distance histogram hl(tm−1) is void in case of a rela-

beling, i.e. hl(tm) = hl(tm−1), and the inequality L1(hl(t0), hl(tm)) =

L1(hl(t0), hl(tm−1)) ≤ c(S) holds. The key observation for an insert or

a delete operation is that only a single bin is affected in the histogram

in any case.

When a node ν is inserted, for all nodes below the insertion point,

clearly, the leaf distance does not change. Only the leaf distance of

any predecessor of the inserted node may or may not be increased by

the insertion. Therefore, if ν does not belong to an MLP of any of

its predecessors, only the bin affected by the inserted node is increased

by one. This means that in the leaf distance histogram exactly one

bin is increased by one. On the other hand, if an MLP of any of the

predecessors of ν containing ν exists, then we only have to consider

the longest of those MLPs. Due to the insertion, this MLP grows in

size by one. As all nodes along the MLP are mapped into consecutive

histogram bins, exactly one more bin than before is influenced by the

nodes on the MLP. This means that exactly one bin in the leaf distance

histogram changes due to the insertion. As insertion and deletion are

symmetric operations, the same considerations hold for the deletion of

a node.

The preceding considerations hold for all edit sequences transform-

ing a tree t1 into a tree t2 and particularly include the minimum cost

edit sequence. Therefore, the lower bounding relationship immediately

holds for the edit distance ED(t1, t2) of two trees t1 and t2, too. �

106 CHAPTER 6. SIMILARITY OF TREES

It should be noticed that the above considerations do not only hold

for the edit distance but also for the degree-2 edit distance. Therefore,

the following theorem allows us also to use leaf-distance histograms for

the degree-2 edit distance.

Theorem 6.2 For any two trees t1 and t2, the L1-distance of the leaf

distance histograms is a lower bound of the degree-2 edit distance of t1

and t2:

L1(hl(t1), hl(t2)) ≤ ED2(t1, t2)

Proof. Analogously to the proof of theorem 6.1. �

Theorem 6.1 and 6.2 also allow us to use leaf distance histograms

as a filter for the weighted edit and degree-2 edit distance. The fol-

lowing considerations justify this. As shown above, the L1-distance of

two leaf distance histograms gives a lower bound for the insert and

delete operations that are necessary to transform the two correspond-

ing trees into each other. This fact also holds for weighted relabeling

operations, as weights do not have any influence on the necessary struc-

tural modifications. But even when insert and delete operations are

weighted, our filter can be used as long as there exists a smallest pos-

sible weight wmin for an insert or delete operation. In this case, the

term (L1(hl(t1), hl(t2)) · wmin) is a lower bound for the weighted edit

and degree-2 edit distance between the trees t1 and t2. Since we assume

metric properties as well as the symmetry of insertions and deletions

for the distance, the triangle inequality guarantees the existence of

such a minimum weight. Otherwise, any relabeling of a node would

6.2. FILTERS FOR UNORDERED TREES 107

be performed cheaper by a deletion and a corresponding insertion op-

eration. Moreover, structural differences of objects would be reflected

only weakly if structural changes are not weighted properly.

Histogram folding. Another property of leaf distance histograms

is that their size is unbounded as long as the size of the trees in the

database is also unbounded. This problem arises for several feature

vector types, e.g. also for degree histograms as presented in section

6.2.3. Papadopoulos and Manolopoulos [PM99] address this problem

by folding the histograms into vectors with fixed dimension. This

is done in a piecewise grouping process. For example, when a 5-

dimensional feature vector is desired, the first 20 percent of the his-

togram bins are summed up and the result is used as the first com-

ponent of the feature vector. This is done analogously for the rest of

the histogram bins. The above approach could also be used for leaf

distance histograms, but it has the disadvantage that the maximal size

of all trees in the database has to be known in advance. For dynamic

data sets, this precondition cannot be fulfilled. Therefore, we propose

a different technique that yields fixed-size n-dimensional histograms by

adding up the values of certain entries in the leaf distance histogram.

Instead of summing up adjacent bins in the histogram, we add up those

with the same index modulo n, as depicted in figure 6.5.

Definition 6.5 (folded histogram) A folded histogram hfn(h) of a

histogram h for a given parameter n is a vector of size n where the

value of any bin i ∈ 0, . . . , n− 1 is the sum of all bins k in h with

108 CHAPTER 6. SIMILARITY OF TREES

Figure 6.5: Folding techniques for histograms: The technique of Pa-

padopoulos and Manolopoulos (top) and the modulo folding technique

(bottom).

k mod n = i, i.e.

hfn(h)[i] =
∑

k=0...(|h|−1)∧k mod n=i

h[k]

The following theorem justifies to use folded histograms in a multi-

step query processing architecture.

Theorem 6.3 For any two histograms h1 and h2 and any parameter

n ≥ 1, the L1-distance of the folded histograms of h1 and h2 is a lower

bound for the L1-distance of h1 and h2:

L1(hfn(h1), hfn(h2)) ≤ L1(h1, h2)

Proof. Let len = n · dmax(h1,h2)
n e be the length of h1 and h2. If neces-

sary, h1 and h2 are extended with bins containing 0 until

|h1| = len and |h2| = len. Then the following holds:

L1(hfn(h1), hfn(h2))

6.2. FILTERS FOR UNORDERED TREES 109

=
n−1∑
i=0

∣∣∣∣∣∣∣
∑

k=0...((|h1|−1)

∧k MOD n=i

h1[k]−
∑

k=0...((|h2|−1)

∧k MOD n=i

h2[k]

∣∣∣∣∣∣∣
=

n−1∑
i=0

∣∣∣∣∣∣∣
(len DIV n)

−1∑
j=0

h1[i + j · n]−

(len DIV n)

−1∑
j=0

h2[i + j · n]

∣∣∣∣∣∣∣
≤

n−1∑
i=0

(len DIV n)−1∑
j=0

|h1[i + j · n]− h2[i + j · n]|

=
len∑
j=0

|h1[k]− h2[k]

= L1(h1, h2)

�

6.2.2 Filtering Based on the Breadth of Trees

As the height of trees can be used to develop a filter for the edit distance

and the degree-2 edit distance between trees, the breadth of trees also

seems worth considering. But other than the height, the breadth of a

tree can not be defined easily. One possibility is to define the breadth

as the maximal number of nodes on the same level within a tree. The

difference between two such values is an obvious lower bound for the

edit distance between the corresponding trees, but again yields a very

coarse filter.

Consequently, a histogram of the number of nodes on each level of

a tree might be considered. Unfortunately, such a histogram cannot

110 CHAPTER 6. SIMILARITY OF TREES

be used to derive a lower-bounding filter for the edit distance. This

is due to the fact that a single insertion or deletion changes the level

of all nodes below the insertion or deletion point. As the size and

structure of this subtree cannot be derived from the histogram, it is

impossible to determine how many histogram bins are affected by a

single edit operation. Therefore, the breadth of trees is not a useful

feature for filtering with the edit distance or the degree-2 edit distance

as similarity measure.

6.2.3 Filtering based on degree of nodes

The degrees of the nodes are another structural property of trees which

can be used as a filter for the edit distances. Again, a simple filter

can be obtained by using the maximal degree of all nodes in a tree t,

denoted by degreemax(t), as a single feature. The difference between

the maximal degrees of two trees is an obvious lower bound for the

edit distance as well as for the degree-2 edit distance. As before, this

single-valued filter is very coarse and provides only a low selectivity.

Once again, using a degree histogram yields a more fine-grained filter

criterion.

Definition 6.6 (degree histogram) The degree histogram hd(t) of

a tree t is a vector of length k = 1 + degreemax(t) where the value of

any bin i ∈ 0, . . . , k is the number of nodes that have the degree i, i.e.

hd(t)[i] = |n ∈ t, degree(n) = i|.

Theorem 6.4 For any two trees t1 and t2, the L1-distance of the de-

gree histograms divided by three is a lower bound of the edit distance

6.2. FILTERS FOR UNORDERED TREES 111

of t1 and t2:
L1(hd(t1), hd(t2))

3
≤ ED(t1, t2)

Proof. Given two arbitrary trees t0 and tm, let us consider an edit

sequence S = 〈S1, . . . , Sm〉 that transforms t0 into tm. We proceed

by induction over the length of the sequence m = |S|. If m = 0,

i.e. S = 〈〉 and t0 = tm, the values of L1(hd(t0),hd(tm))
3 and of c(S) both

are equal to zero. For m > 0, let us assume that the lower bounding

property already holds for the trees t0 and tm−1, i.e.

L1(hd(t0), hd(tm−1))

3
≤ c(〈S1, . . . , Sm−1〉)

When extending the sequence 〈S1, . . . , Sm−1〉 by Sm to S, the right hand

side of the inequality is increased by c(Sm) = 1. The situation on the

left hand side is as follows. The edit step Sm may be a relabeling, an

insert or a delete operation. Obviously, for a relabeling, the degree

histogram hd(tm−1) does not change, i.e. hd(tm) = hd(tm−1) and the

inequality

L1(hd(t0), hd(tm))

3
=

L1(hd(t0), hd(tm−1))

3
≤ c(S)

holds.

The insertion of a single node affects the histogram and the L1-

distance of the histograms in the following way:

1. The inserted node n causes an increase in the bin of n’s degree.

That may change the L1-distance by at most one.

2. The degree of n’s parent node p may change. In the worst case

this affects two bins. The bin of p’s former degree is decreased by

112 CHAPTER 6. SIMILARITY OF TREES

one while the bin of its new degree is increased by one. Therefore,

the L1-distance may additionally be changed by at most two.

3. No other nodes are affected.

From the above three points it follows that the L1-distance of the two

histograms hd(tm−1) and hd(tm) changes by at most three. Therefore,

the following holds:

L1(hd(t0), hd(tm))

3
≤ (L1(hd(t0), hd(tm−1)) + 3)

3
L1(hd(t0), hd(tm))

3
≤ (L1(hd(t0), hd(tm−1))

3
+ 1

L1(hd(t0), hd(tm))

3
≤ c(〈S1, . . . , Sm−1〉) + 1

L1(hd(t0), hd(tm))

3
≤ c(〈S1, . . . , Sm−1, Sm〉)

L1(hd(t1), hd(t2))

3
≤ ED(t1, t2)

�

As the above considerations also hold for the degree-2 edit distance,

theorem 6.4 holds analogously for this similarity measure.

6.2.4 Filtering based on node labels

Apart from the structure of the trees, the content features, expressed

through node labels, have an impact on the similarity of attributed

trees. The node labels can be used to define a filter function. To be

useful in our filter-refinement architecture, this filter method has to

deliver a lower bound for the edit cost when transforming two trees

6.2. FILTERS FOR UNORDERED TREES 113

into each other. The difference between the distribution of the values

within a tree and the distribution of the values in another tree can be

used to develop a lower-bounding filter. To ensure efficient evaluation

of the filter, the distribution of those values has to be approximated

for the filter step.

One way to approximate the distribution of values is to use his-

tograms again. In this case, an n-dimensional histogram is derived

by dividing the range of the node label into n bins. Then each bin is

assigned the number of nodes in the tree whose value is in the range

of the bin. To estimate the edit distance or the degree-2 edit distance

between two trees, half of the L1-distance of their corresponding label

histograms is appropriate. A single insert or delete operation changes

exactly one bin of such a label histogram, a single relabeling operation

can influence at most two histogram bins. If a node is assigned to a

new bin after relabeling, the entry in the old bin is decreased by one

and the entry in the new bin is increased by one (cf. figure 6.6). Oth-

erwise, a relabeling does not change the histogram. This method also

works for weighted variants of the edit distance and the degree-2 edit

distance as long as there is a minimal weight for a relabeling opera-

tion. In this case, the calculated filter value has to be multiplied by

this minimal weight in order to gain a lower-bounding filter.

This histogram approach applies to discrete label distributions very

well. However, for continuous label spaces, the use of a continuous

weight function which may become arbitrarily small, can be reason-

able. In this case, a discrete histogram approach can not be used. An

example for such a weight function is the Euclidean distance in the

114 CHAPTER 6. SIMILARITY OF TREES

B C DAB C DA

B

A

C B C

D

Figure 6.6: A single relabeling operation may result in a label his-

togram distance of two.

color space, assuming trees where the node labels are colors. Here,

the cost for changing a color value is proportional to the Euclidean

distance between the original and the target color. As this distance

can be infinitely small, it is impossible to estimate the relabeling cost

based on a label histogram as in the above cases.

More formally, when using the term ’continuous weight function’

we mean that the cost for changing a node label from value x1 to

value x2 is proportional to |x1 − x2| . Let maxdiff be the maximal

possible difference between two attribute values. Then |x1−x2| has to

be normalized to [0, 1] by dividing it through maxdiff , assuming that

the maximal cost for a single insertion, deletion or relabeling is one.

To develop a filter method for attributes with such a weight function,

we exploit the following property of the edit distance measure. The

cost-minimal edit sequence between two trees removes the difference

between the distributions of attribute values of those two trees. It does

not matter whether this is achieved through relabelings, insertions or

6.2. FILTERS FOR UNORDERED TREES 115

1

2 0

f(t1)

f(t2)

7

3

|f(t1)-f(t2)|

t2

dfilter(t1, t2) = 4/10 = 0.4

(maxdiff = 10)

t1

2

5

Figure 6.7: Filtering for continuous weight functions.

deletions.

For our filter function we define the following feature value f(t) for

a tree t:

f(t) =

|t|∑
i=1

|xi|

Here xi is the attribute value of the i-th node in t and |t| is the size

of tree t. The absolute difference between two such feature values is

an obvious lower bound for the difference between the distribution of

attribute values of the corresponding trees. Consequently, we use

dfilter(t1, t2) =
|f(t1)− f(t2)|

maxdiff

as a filter function for continuous label spaces. Figure 6.7 illustrates the

idea. Once more, the above considerations also hold for the degree-2

edit distance.

To simplify the presentation, we assumed that a node label consists

of just one single attribute. But usually a node will carry several dif-

116 CHAPTER 6. SIMILARITY OF TREES

ferent attributes. If possible, the attribute with the highest selectivity

can be chosen for filtering. In practice, there is often no such single

attribute. In this case, filters for different attributes can be combined

with the technique described in the following section.

6.2.5 Combining filter methods

All of the above filters use a single feature of an attributed tree to

approximate the edit distance or degree-2 edit distance. As the filters

are not equally selective in each situation, we propose a method to

combine several of the presented filters.

A first idea to combine several filters, is to create a multidimen-

sional histogram for the cross-product of the value range of the filters.

This yields a cross-product histogram whose bins contain the number

of nodes in a tree with a certain feature combination. However, this

approach fails, because the edit distance between two trees cannot be

estimated from the differences of two such histograms. The reason for

this observation is that, unlike in the one-dimensional case, an indeter-

minable number of entries in the histogram may change upon a single

edit operation. For example, consider a combination of a height and

a degree histogram. A single insertion may change the leaf distance

of all predecessors of the inserted node. The number depends on the

insertion point and cannot be determined in advance. Additionally,

the predecessors may have different degrees and therefore, the affected

histogram bins can be distributed over the entire histogram. Conse-

quently, the number of affected bins cannot be estimated. Therefore, it

is impossible to derive a lower bound for the edit distance between two

6.2. FILTERS FOR UNORDERED TREES 117

trees from the distance for their respective cross-product histograms.

Hence, we follow a different approach of combining the results of

the existing methods which also allows us to integrate our filter for

continuous weight functions. A very flexible way of combining different

filters, is to follow the inverted list approach, i.e. to apply the different

filters independently from each other and then intersect the resulting

candidate sets. With this approach, separate index structures for the

different filters have to be maintained and for each query, a time-

consuming intersection step is necessary. To avoid those disadvantages,

we concatenate the different filter histograms and filter values for each

object and use a combined distance function as a similarity function.

Definition 6.7 (Combined distance function) Let C = di be a

set of distance functions for trees. Then, the combined distance func-

tion dc is defined to be the maximum of the component functions:

dC(t1, t2) = max{di(t1, t2)}

Theorem 6.5 For every set of lower-bounding distance functions C =

{dlow(t1, t2)}, i.e. for all trees t1 and t2 di(t1, t2) ≤ ED(t1, t2), the

combined distance function dC is a lower bound of the edit distance

function dED:

dC(t1, t2) ≤ ED(t1, t2)

Proof. For all trees t1 and t2, the following equivalences hold:

dC(t1, t2) ≤ ED(t1, t2) ⇔

max{di(t1, t2)} ≤ ED(t1, t2) ⇔

∀di : di(t1, t2) ≤ ED(t1, t2)

The final inequality represents the precondition. �

118 CHAPTER 6. SIMILARITY OF TREES

Justified by theorem 6.5, we apply each separate filter function to

its corresponding component of the combined histogram. The com-

bined distance function is derived from the results of this step.

Again, the above considerations also hold for the degree-2 edit dis-

tance. Therefore, theorem 6.5 allows us also to use the combined his-

togram distance function with the degree-2 edit distance as similarity

measure.

6.3 Experimental Evaluation

To demonstrate the effectiveness and efficiency of our filtering tech-

niques, we performed extensive experiments with real-world data from

two different application domains. Those application domains are

content-based image retrieval and web site mining, both described in

the following sections.

For our tests, we implemented a filter and refinement architec-

ture according to the optimal multi-step k-nearest-neighbor search ap-

proach as proposed in [SK98]. Naturally, the positive effects which we

show in the following experiments for k-nn-queries also hold for range

queries and for all algorithms based on range queries or k-nn-queries

(e.g. clustering, k-nn-classification). As similarity measure for trees,

we implemented the degree-2 edit distance algorithm as presented in

[ZWS96]. We favored the degree-2 edit distance over the general edit

distance due to its polynomial time complexity which is essential for

a similarity measure used in large database systems. The filter his-

tograms were organized by using an X-tree [BKK96]. All algorithms

6.3. EXPERIMENTAL EVALUATION 119

Figure 6.8: Structural and content-based information of a picture

represented as a tree.

were implemented in Java 1.4 and the experiments were run on a work-

station with a Xeon 1.7 GHz processor and 2 GB main memory under

Linux.

6.3.1 Image databases

As one example of tree structured objects we used images, because

for images, both, content-based as well as structural information are

important. Figure 6.8 gives an idea of the two aspects which are present

in a picture.
For our experiments we used images from three real-world databa-

ses:

• A set of 705 black and white pictographs

120 CHAPTER 6. SIMILARITY OF TREES

number height maximal

of nodes of nodes degree

commercial max 331 24 206

color min 1 0 0

images Ø 30 3 18

color max 109 13 71

TV-images min 1 0 0

Ø 24 3 11

black and max 113 2 112

white min 3 1 2

pictographs Ø 13 1 12

Table 6.1: Statistics of the data set.

• A set of 8,536 commercially available color images

• A set of 43,000 color TV images

We extracted trees from those images in a two-step process. First,

the images were divided into segments of similar color by a segmenta-

tion algorithm. In the second step, a tree was created from those seg-

ments by iteratively applying a region-growing algorithm which merges

neighboring segments if their colors are similar. This is done until all

segments are merged into a single node. As a result, we obtain a set

of labeled unordered trees where each node label describes the color,

size and horizontal as well as vertical extension of the associated seg-

ment. Table 6.1 shows some statistical information about the trees we

generated.

For the first experiments, we reduced the number of different at-

tribute values to 16 different color values for each color channel and 4

6.3. EXPERIMENTAL EVALUATION 121

0

50

100

150

200

250

300

350

400

1 10 100

size of k

ru
nt

im
e

in
 s

ec
.

sequential scan height histogram
degree histogram label histogram
height/degree histogram height/label histogram

(a)

0

10

20

30

40

50

60

70

1 10 100

size of k

ca
nd

id
at

es
 in

 %
 o

f d
at

a
se

t
(b)

Figure 6.9: Runtime and number of candidates for k-nn-queries on

10,000 color TV images.

different values each for size and the extensions. We used a relabeling

function with a minimal weight of 0.5. While we used label histograms

for most of our experiments, we also did some experiments where the

different attribute values were not discretized and a continuous weight

function for relabeling was used.

Comparison of our filter types

For our first experiment we used 10,000 TV images. We created 10-

dimensional height and degree histograms and combined them as de-

scribed in section 6.2.5. We also built a 24-dimensional combined label

histogram which included the color, size and extensions of all node la-

bels (6 attributes with histograms of size 4). Finally, the combination

of this combined label histogram and a 4-dimensional height histogram

was taken as another filter criterion. We ran 70 k-nearest-neighbor

queries (k = 1, 10, 100) for each of our filters.

Figure 6.9(b) shows the selectivity of our filters, measured in the

122 CHAPTER 6. SIMILARITY OF TREES

average number of candidates with respect to the size of the data set.

While the filters based only on the degree or the label information al-

ready reduce the number of necessary distance calculations in a range

between 35% and 55%, other filtering methods perform significantly

better. The filter based on the height of the nodes and especially the

combination of the filters based on height and on label information

lead to very small candidate sets for the refinement step. When ap-

plying the combined filter method, only for 9% - 25% of the database

objects the degree-2 edit distance has to be evaluated. Consequently,

the average runtime for queries as depicted in figure 6.9(a) is reduced

by a factor up to 5 when using the multi-step query processing archi-

tecture. A comparison between the two charts in figure 6.9 reveals that

the runtime is obviously dominated by the number of necessary simi-

larity distance calculations, whereas the overhead due to the additional

filter step is negligible.

Influence of histogram size

In a next step, we tested to what extent the size of the histogram in-

fluences the size of the candidate set and the corresponding runtime.

The results for nearest-neighbor queries on 10,000 color TV images

are shown in figure 6.10. With increasing dimension, the number of

candidates as well as the runtime decrease. The comparison of the two

diagrams shows that the runtime is again dominated by the number

of candidates, whereas the additional overhead due to higher dimen-

sional histograms is negligible. Nevertheless, our structural filter and

combined filters show a good performance, even for low-dimensional

6.3. EXPERIMENTAL EVALUATION 123

0

25

50

75

100

125

150

175

200

225

0 5 10 15 20 25

size of histogram

ru
nt

im
e

in
 s

ec

degree histogram height histogram height / degree histogram

(a)

0

10

20

30

40

50

60

0 5 10 15 20 25

size of histogram

ca
nd

id
at

es
 in

 %
 o

f d
at

a
se

t

(b)

Figure 6.10: Influence of dimensionality of histograms and selectivity.

histograms.

Scalability of filters versus size of data set

For this experiment we united all three image data sets and chose

three subsets of size 10,000, 25,000 and 50,000. On these subsets we

performed several representative 5-nn queries. Figure 6.11 shows that

the selectivity of our structural filters does not depend on the size of

the data set. Instead, the slight differences in filter selectivity for the

three different subsets can only be explained with the inhomogeneity

of data sets.

Comparison of different filters for continuous weight function

As mentioned above, we also tested our filters when using a continuous

weight function for relabeling. For this experiment, we used the same

10,000 color images as in our first two experiments. Figure 6.12 shows

the average runtime and number of candidates for 200 k-nn-queries.

In this case, both the height histogram and the label filter are very

124 CHAPTER 6. SIMILARITY OF TREES

0

10

20

30

40

50

60

70

0 10000 20000 30000 40000 50000 60000

size of data set

ca
nd

id
at

es
 in

 %
 o

f d
at

a
se

t
height histogram height/degree histogram
label histogram height/label histogram

Figure 6.11: Scalability versus size of data set.

selective. Unfortunately, the combination of both does not further

enhance the runtime. While there is a slight decrease in the number

of candidates, this is used up by the additional overhead of evaluating

two different filter criteria.

A comparison with the results in figure 6.9 shows an even better

performance of our filter methods for the continuous weight functions

than for the discrete weight functions. For continuous weight functions,

the number of candidates and the runtime are further reduced by a

factor up to 2.

Runtimes for creation of filters

For each filter criterion we created an X-tree storing the filter his-

tograms. Figure 6.13 shows the runtimes for the creation of these

X-trees for 10,000 color images. Even for the most complex filter cri-

6.3. EXPERIMENTAL EVALUATION 125

0

50

100

150

200

250

300

350

400

1 10 100
size of k

ru
nt

im
e

in
 s

ec
.

sequential scan height histogram
label filter height/label histogram

(a)

0

5

10

15

20

25

30

35

40

45

50

1 10 100

size of k

ca
nd

id
at

es
 in

 %
 o

f d
at

a
se

t
(b)

Figure 6.12: Runtime and number of candidates of different filter

methods when using a continuous weight function.

terion the creation time is rather moderate.

The creation also scales well with an increasing number of images.

The creation of an X-tree for a 28-dimensional combined height and

label histogram of 50,000 images for example took 733 seconds.

Comparison with a metric tree

In [CNBYM01] other efficient access methods for similarity search in

metric spaces are presented. In order to support dynamic datasets,

we used the X-tree that can be updated at any time. Therefore, we

chose to compare our filter methods to the M-tree which, analogously,

is a dynamic index structure for metric spaces. We implemented the

M-tree as described in [CPZ97] using mM RAD as split policy. We

chose this split policy for the M-tree, because according to [CPZ97],

trees created with this policy show the best performance concerning

k-nn-queries.

The creation of an M-tree for 1,000 tree objects already took more

126 CHAPTER 6. SIMILARITY OF TREES

0

10

20

30

40

50

60

70

10-dimensional
height

histogram

10-dimensional
degree

histogram

20-dimensional
height/degree

histogram

24-dimensional
combined label

histogram

28-dimensional
height/label
histogram

ru
nt

im
es

 in
 s

ec
.

Figure 6.13: Runtimes for filter creation.

than one day, due to the split policy which has quadratic time-com-

plexity. The time for the creation of the filter vectors, on the other

hand, was in the range of a few seconds. As can be seen in figure

6.14, the M-tree outperformed the sequential scan for small result sizes.

However, all of our filtering techniques significantly outperformed the

sequential scan and the M-tree index for all result set sizes. This

observation can be explained with fact that the filtering techniques

reduce the number of necessary distance calculations far more than

the M-tree index. This behaviour results in speed-up factors between

2.5 and 6.2 compared to the M-tree index and even higher factors

compared to a simple sequential scan. It demonstrates that our multi-

step query processing architecture is a significant improvement over

the standard indexing approach.

6.3. EXPERIMENTAL EVALUATION 127

0

50

100

150

200

250

300

350

400

1 10 100
size of k

ru
nt

im
e

in
 s

ec
.

sequential scan height histogram heigth/label histogram M-tree

(a)

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

1 10 100
size of k

di
st

an
ce

 c
om

pu
ta

tio
ns

 (%
 o

f D
B

 s
iz

e)

height histogram heigth/label histogram M-tree

(b)

Figure 6.14: Runtime and number of distance computations of dif-

ferent filter methods compared to the M-tree.

6.3.2 Web site graphs

As demonstrated in [WZJS94], the degree-2 edit distance is well suit-

able for approximate web site matching. In web site management it

can be used for searching similar web sites. In [EKS02] web site mining

is described as a new way to spot competitors, customers and suppliers

in the World Wide Web.

By choosing the main page as the root, one can represent a web site

Figure 6.15: Part of a web site tree.

128 CHAPTER 6. SIMILARITY OF TREES

207

96
152

94

0

250

500

750

1000

1250

1500

1750

2000

sequential scan height
histogram

degree
histogram

height/degree
histogram

ru
nt

im
e

in
 s

ec
runtime in sec. number of candidates

Figure 6.16: Average runtime and number of candidates for 5-nn

queries.

as a rooted, labeled, unordered tree. Each node in the tree represents

a web page of the site and is labeled with the URL of that page. All

referenced pages are children of that node. Of course, the borders of the

web site must be chosen adequately. See figure 6.15 for an illustration.

For our experiment, we used a compressed form of the 207 web sites

described in [EKS02]. On the average, the trees have 67 nodes. We

ran 5-nn-queries on this data. The results are shown in figure 6.16.

It has to be noted that even if the degree filter produces a lot more

candidates than the height filter, it results in a better runtime. This

is due to the fact that it filters out those trees, where the computation

of the degree-2 edit distance is especially time-consuming. Again, the

best performance is achieved with the combination of both filter his-

tograms, leading to a speed-up factor of 4 compared to the sequential

scan.

6.4. CONCLUSIONS 129

6.4 Conclusions

Attributed trees are an important subclass of structured data. In this

chapter, we discussed efficient similarity search in large databases of

attributed trees. As trees have special properties, the introduction of

new similarity measures for this type of data was justified. To achieve

the necessary efficiency for similarity search in large databases, we

developed a multi-step query processing architecture. We proposed

several filter methods for this architecture and demonstrated their effi-

ciency and effectiveness, both, theoretically and through experiments.

The experiments showed that our approach represents a significant

improvement over standard indexing techniques.

130 CHAPTER 6. SIMILARITY OF TREES

Chapter 7

The Matching Distance

7.1 Introduction

All of the similarity measures for attributed graphs from the literature

which were presented in chapter 3 did not fulfill all of the require-

ments for similarity measures that we defined in chapter 2. In the

context of large databases, where the measure is evaluated frequently,

the time complexity of the measure is especially important. While the

edit distance for graphs is an intuitive measure, that takes structure

and attributes into account, its exponential time complexity prevents

a broad use in large databases systems. On the other hand, the ac-

companying edit sequence provides an explanation for an edit distance

value and this is a very valuable feature for the user. Therefore, we

propose a new similarity measure for attributed graphs in this chap-

ter, which also provides such an explanation of the similarity distance

value while having polynomial time complexity.

In the following section, we describe the vertex matching distance

131

132 CHAPTER 7. THE MATCHING DISTANCE

which provides the basis for our new similarity measure for attributed

graphs. Afterwards, our new measure, the edge matching distance is

introduced and its properties are described. In section 7.4 we demon-

strate the effectiveness of the edge matching distance as similarity mea-

sure for attributed graphs, before we introduce some efficient query

processing techniques for the measure in section 7.5. After a thorough

evaluation of our approaches in section 7.6, a short conclusion follows.

Parts of the material in this chapter was published in [KS03].

7.2 The Vertex Matching Distance

In image retrieval, images are sometimes described as so-called ’at-

tributed relational graphs’. In this case, an image is modeled as an

attributed graph, where the vertices of the graph represent regions in

the image and the edges represent a neighborhood relation between

the regions. Figure 7.1 illustrates the concept of attributed relational

graphs.

In [Pet02] several similarity measures for attributed relational graphs

are compared. One of the presented methods is called the ’Hungarian

method’. As the term ’Hungarian method’ is also coomon for an algo-

rithm that is used when determining this similarity measure, we will

call it vertex matching distance in the following. The vertex matching

distance is only defined for graphs with the same order, i.e. with the

same number of nodes. The main idea of the vertex matching distance

is to determine a minimal-weight maximum matching between the ver-

tex sets of the graphs for which the similarity is calculated. To achieve

7.2. THE VERTEX MATCHING DISTANCE 133

� �
� �
� �
� �

� �
� �
� �
� �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure 7.1: An image and its attributed relational graph (ARG).

this, a complete bipartite graph is built from the sets of vertices of the

two compared graphs. Afterwards, each edge in the bipartite graph is

assigned a weight by using a cost function. A minimum-weight max-

imum matching within this bipartite graph is determined, employing

the already mentioned Hungarian method introduced by Kuhn [Kuh55]

and Munkress [Mun57]. The overall cost of the minimum-weight max-

imum matching is then used as measure for the similarity of the two

compared graphs. The idea of the vertex matching distance is illus-

trated in figure 7.2.

The definition of the vertex matching distance is as follows:

Definition 7.1 (vertex matching distance) Let G1(V1, E1) and

G2(V2, E2) be two attributed graphs of the same order and let there be a

cost function c : V1×V2 7→ IR+
0 , which is a metric. The vertex matching

distance between G1 and G2, denoted dvertex(G1, G2), is defined as the

weight of a minimum-weight matching in a complete bipartite graph of

134 CHAPTER 7. THE MATCHING DISTANCE

Figure 7.2: The general idea of the vertex matching distance.

the two vertex sets V1 and V2 with respect to the cost function c.

7.2.1 Properties of the vertex matching distance

The vertex matching distance has several properties that influence its

suitability as a similarity measure. An important property of the ver-

tex matching distance is that all edges within the compared graphs

together with their attributes are ignored by the measure. Hence, the

structure of graphs does not influence their similarity value. Ignoring

the structure of graphs also implies that graphs with identical vertex

sets but different edge sets have a vertex matching distance of zero.

Or more formally:

∀G1(V1, E1), G2(V2, E2) : V1 = V2 ⇒ dvertex(G1, G2) = 0

This property implies that two graphs need not be isomorphic in order

to have a vertex matching distance of zero. Consequently, the vertex

matching distance can only be considered a metric in the well-known

7.2. THE VERTEX MATCHING DISTANCE 135

mathematical sense if all graphs with identical vertex sets are consid-

ered identical, too.

Theorem 7.1 Let us assume that two attributed graphs G1(V1, E1)

and G2(V2, E2) are identical if V1 = V2. Then the vertex matching

distance for attributed graphs is a metric.

Proof. To show that the vertex matching distance is a metric, we

have to prove the three metric properties for this similarity measure.

1. dvertex(G1, G2) ≥ 0 and dvertex(G1, G2) = 0 ⇔ G1 = G2:

The vertex matching distance between two graphs is the sum of

the cost for each matching of two vertices. As the cost function

is non-negative, any sum of cost values is also non-negative. Due

to the assumption, also the property of definiteness is fulfilled.

2. dvertex(G1, G2) = dvertex(G2, G1):

The minimum-weight maximal matching in a bipartite graph is

symmetric if the edges in the bipartite graph are undirected. This

is equivalent to require that the cost function is symmetric. As

the cost function is a metric, the cost for matching two vertices

is symmetric. Therefore, the vertex matching distance is sym-

metric.

3. dvertex(G1, G3) ≤ dvertex(G1, G2) + dvertex(G2, G3):

As the cost function is a metric, the triangle inequality holds for

each triple of vertices in G1, G2 and G3 and for those vertices that

are mapped to a dummy vertex. The vertex matching distance is

136 CHAPTER 7. THE MATCHING DISTANCE

the sum of the cost of the matching of individual vertices. There-

fore, the triangle inequality also holds for the vertex matching

distance.

�

For efficient similarity search in large databases the time complexity

of the vertex matching distance is also very important. The calculation

of the vertex matching distance is divided into two steps. First, a

complete bipartite graph has to be built from the vertex sets of the

compared graphs. Afterwards, a minimal-weight matching within this

bipartite graph has to be found. If n is the size of the largest vertex set,

the first step can, obviously, be performed in O(n) time. The minimal-

weight matching can be determined in O(n3) time, using the Hungarian

algorithm by Kuhn [Kuh55] and Munkress [Mun57]. Therefore, the

time complexity of the vertex matching distance is O(n3). Obviously,

this is much better than the time complexity of the edit distance for

attributed graphs. Nevertheless, it is still too complex for the use in

large databases and when the graphs have a high order. Consequently,

techniques for efficient query processing are needed to employ this

measure in our application scenarios.

The only parameter of the vertex matching distance is the cost

function for matching two vertices onto each other. By choosing a

different cost function, the vertex matching distance can be adapted

to the specific needs of an application or to the notion of similarity of

a user. Naturally, the cost function also influences the properties of

the vertex matching distance. Obviously, the runtime of calculating the

7.2. THE VERTEX MATCHING DISTANCE 137

vertex matching distance depends on the cost function. As the number

of necessary cost function evaluations increases quadratically with the

size of the largest of the two compared graphs, the choice of the cost

function should also take efficiency considerations into account.

As described in chapter 3, an explanation for a similarity measure

is important for the user in order to allow a purposeful adaption of

the measure’s parameters. For the vertex matching distance, such an

explanation is available in form of the matching between the vertex

sets. Provided with the matching, the user is able to understand how

the similarity distance value comes about and, subsequently, adapt the

cost function to reflect the user’s notion of similarity.

7.2.2 Problems of the vertex matching distance

The vertex matching distance satisfies several of the requirements we

defined in chapter 3. Especially the polynomial time complexity and

the availability of an explanation component make it a good similarity

measure for attributed graphs. Nevertheless, it has two major disad-

vantages. The first problem is that the vertex matching distance does

not take the structure of the graphs into account. Consequently, struc-

turally very different graphs with similar vertex sets are considered as

similar. This leads to results that often do not reflect the human no-

tion of similarity. Furthermore, the vertex matching distance is only

defined for graphs of the same order which forces the user to represent

all objects by graphs of the same order which is often not sensible.

138 CHAPTER 7. THE MATCHING DISTANCE

7.3 The Edge Matching Distance

Since all the known similarity measures for attributed graphs have

certain drawbacks, we present a new similarity measure for attributed

graphs. This measure is based on the ideas of the edit distance and the

vertex matching distance and solves the problems mentioned above.

For our similarity measure, called the edge matching distance, we

also rely on the principle of graph matching, just like the vertex match-

ing distance. But instead of matching the vertices of two graphs, we

propose a cost function for the matching of edges and then derive a

minimal weight maximal matching between the edge sets of two graphs.

This way not only the attribute distribution, but also the structural

relationships of the vertices are taken into account. Figure 7.3 illus-

trates the idea behind our measure, while the formal definition of the

edge matching distance is as follows:

Definition 7.2 (edge matching, edge matching distance)

Let G1(V1, E1) and G2(V2, E2) be two attributed graphs. Without loss of

generality, we assume that |E1| ≥ |E2|. The bipartite graph Gem(Vem =

E1 ∪ E2 ∪ ∆, E1 × (E2 ∪ ∆)) is called the edge matching graph of

G1 and G2, with ∆ representing unmatched edges of the larger graph

E1. An edge matching between G1 and G2 is defined as a maximal

matching in Gem. Let there be a non-negative metric cost function

c : E1 × (E2 ∪∆) 7→ IR+
0 . We define the matching distance between G1

and G2, denoted by dmatch(G1, G2), as the cost of the minimum-weight

edge matching between G1 and G2 with respect to the cost function c.

It must be noted that the edge matching distance is defined also

7.3. THE EDGE MATCHING DISTANCE 139

� � �
� � �
� � �

� � �
� � �
� � �

G1

� �
� �
� �

� �
� �
� �

G2

∆

Figure 7.3: An example of an edge matching between the graphs G1

and G2.

for graphs which have not the same size or order. This property of

the definition is achieved through the introduction of ∆ symbols in the

bipartite graph which represent unmatched edges.

Through the use of an appropriate cost function, it is possible to

adapt the edge matching distance to the particular application needs.

This implies how individual attributes are weighted or how the struc-

tural similarity is weighted relative to the attribute similarity.

7.3.1 Properties of the Edge Matching Distance

After defining our new similarity measure for attributed graphs, we

have to investigate its properties more closely. Especially the require-

ments for similarity measures that we defined in chapter 3 have to be

checked. One of those requirements is the adaptability of the simi-

larity measure to the needs of specific applications or users. As we

just stated, the edge matching distance can be adapted to the needs of

140 CHAPTER 7. THE MATCHING DISTANCE

∆∆∆∆

Figure 7.4: Presentation of an edge mapping for the user.

the user by choosing an appropriate cost function. The cost function

chosen by the user has to fulfill only a few properties which we will

describe in this section.

Another requirement for a similarity measure, is the need for an

explanation of the measure in order to allow the user a purposeful

adaption of the cost function. For the edge matching distance, such an

explanation of the measure exists in the form of the matching between

the edges of the two graphs that are compared. This matching can be

presented to the user even in a graphical form as depicted in figure 7.4.

Therefore, the edge matching distance also fulfills the requirement of

an explanation of the measure.

In chapters 3 and 4 we already demonstrated that the time complex-

ity of similarity measures for attributed graphs is often a crucial point.

Especially in the context of data mining applications, the time com-

plexity of the similarity measure is important. The following theorem

describes the time complexity of the edge matching distance and the

accompanying proof also provides a way to calculate the edge matching

distance between two attributed graphs efficiently.

7.3. THE EDGE MATCHING DISTANCE 141

Theorem 7.2 The matching distance can be calculated in O(n3) time

in the worst case.

Proof. To calculate the matching distance between two attributed

graphs G1 and G2, a minimum-weight edge matching between the two

graphs has to be determined. This is equivalent to determining a mi-

nimum-weight maximal matching in the edge matching graph of G1

and G2. To achieve this, the method of Kuhn [Kuh55] and Munkres

[Mun57] can be used. This algorithm, also known as the Hungarian

method, has a worst case complexity of O(n3), where n is the number

of edges in the larger one of the two graphs. �

Apart from the complexity of the edge matching distance itself, it

is also important that there are efficient search algorithms and in-

dex structures to support the use in large databases. In the con-

text of similarity search, two query types are most important, which

are range queries and (k)-nearest-neighbor queries. Especially for k-

nearest-neighbor search, Roussopoulos, Kelley and Vincent [RKV95]

and Hjaltason and Samet [HS95] proposed efficient algorithms. Both

of these require that the similarity measure is a metric. Additionally,

those algorithms rely on an index structure for the metric objects, such

as the M-tree [CPZ97]. Therefore, the following theorem is of great

importance for the practical application of the edge matching distance.

Theorem 7.3 Let us assume that two attributed graphs G1(V1, E1)

and G2(V2, E2) are identical if E1 = E2. Then the edge matching

distance for attributed graphs is a metric.

142 CHAPTER 7. THE MATCHING DISTANCE

Proof. To show that the edge matching distance is a metric, we have

to prove the three metric properties for this similarity measure.

1. dmatch(G1, G2) ≥ 0 and dmatch(G1, G2) = 0 ⇔ G1 = G2:

The edge matching distance between two graphs is the sum of

the cost for each edge matching. As the cost function is non-

negative, any sum of cost values is also non-negative. Due to the

assumption, the property of definiteness is fulfilled, too.

2. dmatch(G1, G2) = dmatch(G2, G1):

The minimum-weight maximal matching in a bipartite graph is

symmetric if the edges in the bipartite graph are undirected. This

is equivalent to the cost function being symmetric. As the cost

function is a metric, the cost for matching two edges is symmet-

ric. Therefore, the edge matching distance is symmetric.

3. dmatch(G1, G3) ≤ dmatch(G1, G2) + dmatch(G2, G3):

As the cost function is a metric, the triangle inequality holds for

each triple of edges in G1, G2 and G3 and for those edges that

are mapped to an empty edge. The edge matching distance is the

sum of the cost of the matching of individual edges. Therefore,

the triangle inequality also holds for the edge matching distance.

�

Definition 7.2 does not require that the two graphs are isomorphic

in order to have a matching distance of zero. But the matching of the

edges together with an appropriate cost function ensures that graphs

with a matching distance of zero have a very high structural similarity.

7.3. THE EDGE MATCHING DISTANCE 143

But even if the application requires that only isomorphic graphs are

considered identical, the matching distance is still of great use. The

following lemma allows us to use the matching distance between two

graphs as a filter for the edit distance in a filter refinement architecture

as described in 2.3.2. This way, the number of expensive edit distance

calculations during query processing can be significantly reduced.

Lemma 7.1 Given a cost function for the edge matching which is al-

ways less than or equal to the cost for editing an edge, the matching

distance between attributed graphs is a lower bound for the edit distance

between attributed graphs:

∀G1, G2 : dmatch(G1, G2) ≤ dED(G1, G2)

Proof. Let there be two graphs G1(V1, E1) and G2(V2, E2) . Let

there also be two cost functions cmatch : (E1 ∪ ∆) × (E2 ∪ ∆) 7→ IR+
0

and cED : (E1 ∪ ∆) × (E2 ∪ ∆) 7→ IR+
0 for the matching distance and

the edit distance respectively, with

∀e1 ∈ (E1 ∪∆), e2 ∈ (E2 ∪∆) : cmatch(e1, e2) ≤ cED(e1, e2)

We distinguishe two cases. In the first case, dmatch(G1, G2) = 0. In

this case, the inequality of the lemma is trivally fulfilled, since the edit

distance is a metric and, therefore, positive.

In the second case, when dmatch(G1, G2) > 0, the following holds:

This case can only occur, if edges e1 and e2 have to be matched

onto each other with cmatch(e1, e2) > 0. This, in turn, is only possible

if the the edges differ in some form and, therefore, cED(e1, e2) > 0.

144 CHAPTER 7. THE MATCHING DISTANCE

But the edit operation (e1 → e2) or another operation with equal or

higher cost has to be in the cost minimal edit sequence for the graphs

G1 and G2. Otherwise, a matching with lower cost, induced by this

edit sequence with lower cost, would be possible which contradicts the

minimality of the edge matching distance. Obviously, the above con-

siderations hold for all pairs e1 and e2 with cmatch(e1, e2) > 0. Since

cmatch(e1, e2) ≤ cED(e1, e2) in all cases and the edge matching distance

as well as the edit distance between two graphs are the sum of the cost

for the individual operations, it follows that

∀G1, G2 : dmatch(G1, G2) ≤ dED(G1, G2)

�

Finally, it has to be investigated whether the edge matching dis-

tance is capable of reflecting a human notion of similarity and whether

the results are an actual improvement over the existing measures. The

results of this investigation are described in the following section.

7.4 Effectiveness of the Matching Distance

To evaluate our new methods, we chose an image retrieval application

and ran tests on a number of real-world data sets:

• 705 black-and-white pictographs

• 9818 full-color TV images

To extract graphs from the images, they were segmented with a region

growing technique and neighboring segments were connected by edges

7.4. EFFECTIVENESS OF THE MATCHING DISTANCE 145

to represent the neighboring relationship. Each segment was assigned

four attribute values, which are the size, the height and width of the

bounding box and the color of the segment. The values of the first three

attributes were expressed as a percentage relative to the image size,

height and width in order to make the measure invariant to scaling.

We implemented all methods in Java 1.4 and performed our tests on a

workstation with a 2.4 GHz Xeon processor and 4GB RAM.

To calculate the cost for matching two edges, we added the differ-

ence between the values of the attributes of the corresponding terminal

vertices of the two edges divided by the maximal possible difference

for the respective attribute. This way, relatively small differences in

the attribute values of the vertices result in a small matching cost for

the compared edges. When matching an edge with an empty edge, the

cost is twice the sum of the maximal difference of all vertex attributes

plus the sum of the maximal difference of all edge attributes. This

results in a cost function which fulfills the metric properties.

Figure 7.5 shows a comparison between the results of a 10-nearest-

neighbor query in the pictograph data set with the edge matching

distance and the vertex matching distance. As can be seen, the result

obtained with the edge matching distance contains less false positives

due to the fact that the structural properties were taken into account

when using this measure. It is important to note that this better

result was obtained, even though the runtime of the query processing

increases by as little as 5%.

To demonstrate the usefulness of the edge matching distance for

data mining tasks, we determined clusterings of the TV images by us-

146 CHAPTER 7. THE MATCHING DISTANCE

Figure 7.5: Result of a 10-nearest-neighbor query for the pictograph

data set. The query object is shown on top, the result for the vertex

matching distance is in the middle row and the result for the edge

matching distance is at the bottom.

ing the density-based clustering algorithm DBSCAN [EKSX96]. Figure

7.6 shows one cluster found with the edge matching distance. Al-

though, the cluster contains some other objects, it clearly consists

mainly of portraits. When clustering with the vertex matching dis-

tance, no comparable cluster could be found, i.e. this cluster could

only be found with the edge matching distance as similarity measure.

To compare the results for the edge matching distance with those of

another image similarity measure, we implemented the color-based im-

age similarity search system presented by Seidl and Kriegel in [SK97].

With this system we also performed clustering experiments. Like with

the vertex matching distance, the cluster depicted in figure 7.6 could

also not be found with the color-based similarity measure. Instead,

the images of the cluster in figure 7.6 were assigned to several differ-

7.5. EFFICIENT QUERY PROCESSING 147

Figure 7.6: A cluster of portraits in the TV images.

ent clusters when using the color-based similarity model. This result

demonstrates the usefulness of the edge matching distance for content-

based image retrieval.

7.5 Efficient Query Processing with the

Matching Distance

While the edge matching distance already has a polynomial time com-

plexity, it is still too complex for the use in large databases without

support for efficient query processing. Especially in the context of data

mining, where many similarity queries are executed within one mining

task, efficient query processing becomes vital. In this section, we will

investigate how efficient query processing can be done with the edge

matching distance.

148 CHAPTER 7. THE MATCHING DISTANCE

7.5.1 Metric Index Structures

As described in chapter 2, the use of index structures is a standard

approach to speed up query processing for similarity search. Since

the matching distance together with attributed graphs forms no vec-

tor space but a metric space, index structures for metric spaces are

needed to speed up query processing with the edge matching distance

as similarity measure. Additionally, the index structures should be

fully dynamic in the sense that the insertion of a single graph to the

database does never require a complete reorganization of the index

structure. In other words, update operations on the index structure

should be possible efficiently. One reason for this requirement is that

databases are usually updated very often. Therefore, also index up-

dates have to be carried out often. But even in application scenarios

where updates are performed only periodically, like in data warehouses,

dynamic properties of the index structure are important. In those ap-

plications, an effective and efficient index structure is necessary for the

acceptable performance of subsequent data mining steps. Obviously,

the update of the index structure must not take longer than the time

gained by the use of an index structure in the data mining step. Oth-

erwise, the positive effects of using an index structure are used up by

excessive index update times. Static index structures which have to be

rebuilt after each database update usually cannot fulfill this require-

ment.

Consequently, dynamic index structures for metric spaces are needed

in conjunction with the edge matching distance as similarity measure.

To our best knowledge, the members of the M-tree family, which are

7.5. EFFICIENT QUERY PROCESSING 149

the M-tree [CPZ97] and the Slim-tree [TTSF00], are the only examples

of such index structures. For complex similarity measures, the M-tree

is especially suitable, as the query algorithms for this structure try

to minimize the number of distance calculations which are necessary

during query processing.

7.5.2 Filter Methods for the Edge Matching Dis-

tance

Another way to improve the query processing performance of similarity

search applications is to introduce a multi-step query processing archi-

tecture as described in section 2.3.2. In order to use it in conjunction

with the edge matching distance, filters for the edge matching distance

measure are needed. Since the edge matching distance measures the

structural and attribute similarity of graphs, those filters have to cover

both aspects in order to be effective. Therefore, we propose a filter for

each of those aspects and demonstrate how they can be combined.

Filtering Based on the Structure of Graphs

One way to derive a filter for a similarity measure is to approximate

the database objects and then determine the similarity of those ap-

proximations. As an approximation for the structure of a graph G,

we use the size of that graph, denoted by s(G), i.e. the number of

edges in the graph. We define the following similarity measure for our

structural approximation of attributed graphs:

dstruct(G1, G2) = |s(G1)− s(G2)| · wmismatch

150 CHAPTER 7. THE MATCHING DISTANCE

Here wmismatch is the cost for matching an edge with an empty edge.

When the edge matching distance between two graphs is determined,

all edges of the larger graph, which are not mapped onto an edge of

the smaller graph, are mapped onto an empty dummy edge. Therefore,

the above measure fulfills the lower bounding property, i.e.

∀G1, G2 : dstruct(G1, G2) ≤ dmatch(G1, G2)

Filtering Based on the Attributes of Graphs

For trees we already presented filtering methods based on the attributes

of the vertices (cf. section 6.2.4). The basic idea behind those filters

was that a lower-bounding filter could be derived from the difference of

the attribute distributions of two trees. The same principle also forms

the basis of our filter methods for the attribute part of graphs when

using the edge matching distance.

When determining the edge matching distance between two graphs,

edges from both graphs are mapped onto each other. Consequently,

the edge matching distance between two graphs is the smaller the more

edges with the same attribute values the two graphs have in common,

i.e. the more similar their attribute value distributions are. Obviously,

it is too complex to determine the exact difference of the attribute

distributions of two graphs in order to use this as a filter and an ap-

proximation of those distributions is needed. A histogram of the values

of one attribute in a graph is one possible approximation of the dis-

tribution of attribute values in a graph. From the difference between

two such histograms, it is possible to estimate the difference of the

7.5. EFFICIENT QUERY PROCESSING 151

B C DAB C DA

B

A

C B

D

C

Figure 7.7: The change of a single attribute in a graph can change

two bins of the attribute histogram.

distribution of attribute values and, therefore, the edge matching dis-

tance between the corresponding graphs. The difference between two

histograms can be measured by using the L1-distance, also known as

Manhattan distance. In order to derive a lower bounding filter value

from the L1-distance of two histograms, several points have to be taken

into account.

One such point is the observation that the L1-distance of two his-

tograms is not a lower bound for the number of differing attribute

values in the corresponding graphs. Instead, it is a lower bound for

twice the number of differing attribute values, as the change of a single

attribute value can change two histogram bins. If the attribute value

changes so much that it falls in a new histogram bin, the value in the

former bin is reduced by one, whereas the value in the new bin is in-

creased by one. Consequently, the change of a single attribute value

changes two bins of the attribute histogram. Figure 7.7 illustrates the

situation.

152 CHAPTER 7. THE MATCHING DISTANCE

Furthermore, it has to be mentioned that the size and resolution of

the attribute histograms can be chosen by the user independently of

the graph size or the graph order. Consequently, no histogram folding

techniques like the ones presented in chapter 6.2.1 are needed to achieve

histograms of a fixed size.

Another aspect of the attribute histogram approach is that the

cost function used in the edge matching distance has to be taken into

account. This task is straight forward, if the cost for matching two

attribute values is independent of the values of other attributes of

the graphs. In this case, half the L1-distance of the histograms only

has to be multiplied with a weighting factor. This weighting factor

represents the fraction that the considered attribute contributes to the

overall cost for matching two edges. If this fraction of the cost is not

independent of other graph attributes, the situation has to be analyzed

carefully for the specific cost function that is used in order to ensure

the lower bounding property of the filter method. Fortunately, such

cost functions are rare in practice, because it is also difficult to ensure

the metric property of the cost function in that case.

For attributes associated with the vertices of the graphs, a specialty

of the edge matching distance becomes important. The matching of

edges during the distance calculation has the effect that a vertex v

is compared with several vertices of the second graph, namely exactly

degree(v) many vertices. Therefore, when a histogram for an attribute

of a graph is created, the bin which covers the attribute value of a

vertex v has to be increased by degree(v) instead of only by one.

Finally, the problem of how to combine the filters for the different

7.5. EFFICIENT QUERY PROCESSING 153

attributes and the filter for the structural aspect of attributed graphs

has to be solved. This problem has already been addressed in section

6.2.5 and techniques presented there can also be applied here without

change.

Even when all of the above topics are considered, the simple his-

togram approach for filtering can fail. This is the case, when the cost

for changing attribute value a1 into attribute value a2 is proportional

to |a1 − a2|, i.e. if that cost can become arbitrarily small. In other

words, the approach fails if the fraction that the cost for changing a

specific attribute contributes to the overall matching cost is variable

and may even become zero. In the following, we will call such cost

functions continuous cost functions. Continuous cost functions are of-

ten sensible, for example in image retrieval, where the cost for changing

a color value may be proportional to the distance of the original and

the new color within the color space. Therefore, we propose a different

approach to derive filter methods for attributes when a continuous cost

function is used in conjunction with the edge matching distance.

Our filter for attributes with a continuous cost function also aims at

estimating the difference of the distributions of attribute values within

the graphs that are compared. Since the cost function is proportional

to the difference between the attribute values of edges that are assigned

to each other, the overall cost is proportional to the sum of all the single

attribute value differences. Therefore, our filter method has to provide

a lower bound for this sum. To achieve this, we exploit the following

fact:

∀x, y ∈ IR : ||x| − |y|| ≤ |x− y|

154 CHAPTER 7. THE MATCHING DISTANCE

From this fact it follows that:

∀x, y ∈ IR, n ∈ IN :
∑
n
||xn| − |yn|| ≤

∑
n
|xn − yn|

⇔

∀x, y ∈ IR, n ∈ IN : |
∑
n
|xn| −

∑
n
|yn|| ≤

∑
n
|xn − yn|

This allows us to calculate a lower bounding value for the sum of

all attribute value differences between two graphs by calculating the

difference between the sums of the absolute attribute values within

each graph.

For attributes which are associated with edges, we can simply add

all the absolute values for an attribute in the graphs. For two graphs

G1 and G2 with s(G1) = s(G2), the difference between those sums,

denoted by da(G1, G2), is the minimum total difference between G1

and G2 for the respective attribute. Weighted appropriately according

to the cost function which is used, this is a lower bound for the edge

matching distance. For graphs of different size this is no longer true,

as an edge causing the attribute difference could also be assigned to an

empty edge. Therefore, the difference in size of the graphs multiplied

with the maximum cost for this attribute has to be subtracted from

da(G1, G2) in order to be lower bounding in all cases.

Attributes associated with the vertices of graphs need agian a spe-

cial consideration. The fact that a vertex may be matched onto several

vertices of the other graph by the edge matching distance has a simi-

lar effect as with the histogram approach. To take care of this effect,

the absolute attribute value for a vertex attribute has to be multiplied

with the degree of the vertex which carries this attribute value. After-

7.5. EFFICIENT QUERY PROCESSING 155

wards, the attribute values are added in the same manner as for edge

attributes. Obviously, the appropriately weighted size difference has

to be subtracted in order to achieve a lower bounding filter value for

a node attribute.

As a result of the above considerations, we calculate the sum of

all absolute values for an attribute within a graph as a feature value

for that graph. In case of attributes associated with vertices, each

attribute value is multiplied with the degree of the vertex with which

it is associated. As we just explained, it is possible to derive a lower

bound for the edge matching distance between two graphs from the

difference between the feature values of respective graphs.

It has to be noted that this technique for filtering in conjunction

with continuous cost functions also works in all cases where no contin-

uous cost function is used.

Combining Structural and Attribute Filters

Finally, the structural filter and the filters for the different attributes

have to be combined to determine an overall filter distance. One possi-

bility of combining the different filters is to use the maximum of all the

lower bounding filter values as the combined filter value. This tech-

nique, which we already described thoroughly in section 6.2.5, does also

work well for the edge matching distance. Especially, it also allows to

combine attribute filters based on the histogram approach.

When using our attribute filtering technique for continuous cost

functions, another way of combining the filters is possible. In this

case, it is possible to sum up the structural and all the attribute filter

156 CHAPTER 7. THE MATCHING DISTANCE

distances which have to be weighted appropriately according to the

cost function. The resulting sum is still a lower bound for the edge

matching distance between the graphs that are compared. This fact

becomes clear, when considering that each of the filters only gives a

lower bound for the cost induced by a single attribute. But the edge

matching distance is the sum of all those costs for the attribute and

structural differences. Therefore, the sum of all those lower bounding

values for the components of the overall cost is still a lower bound for

the overall cost.

In order to simplify the handling, all the filter values for a graph

can be stored in a single vector.

7.6 Experimental Evaluation

To demonstrate the efficiency of our multi-step query processing ar-

chitecture together with the edge matching distance, we thoroughly

evaluated all the presented techniques experimentally. As described in

section 1.4, we use applications from image retrieval and bioinformat-

ics for our evaluation. Additionally, we tested the scalability of our

methods for large databases with randomly generated graphs.

We compared our multi-step query processing architecture with an

index structure for metric spaces. Since our approach is fully dynamic,

we chose the M-tree as metric index structure, because it is also fully

dynamic in the sense that index updates do not require a complete re-

build of the index structure. We implemented the M-tree as described

in [CPZ97], with the best split policy with respect to the query times

7.6. EXPERIMENTAL EVALUATION 157

that is mentioned there. All methods were implemented in Java 1.4

and we performed our tests on a workstation with a 2.4GHz Xeon

processor and 4GB RAM.

For the edge matching distance, the same cost functions as in sec-

tion 7.4 were used, to ensure consistent results.

7.6.1 Image retrieval

We tested our methods with the content-based image retrieval appli-

cation described in section 1.4.1 and also used the same method to

extract graphs from images as described there. During the segmen-

tation of the images each segment was assigned four attribute values,

which are the size, the height and width of the bounding box and the

color of the segment. The values of the first three attributes were ex-

pressed as a percentage relative to the image size, height and width

in order to make the measure invariant to scaling. As in section 7.4,

we used a set of 9,898 TV images and a set of 705 black-and-white

pictographs. Table 1.1 on page 15 shows some statistics of those data

sets.

To measure the selectivity of our filter method, we implemented a

multi-step query processing architecture as described in [SK98]. For

each of our data sets, we measured the average filter selectivity for 100

queries which retrieved various fractions of the database. The results

for the experiment when using the full-color TV images is depicted in

figure 7.8. It shows that the selectivity of our filter is very high. For

example, for a query result which is 5% of the database size, as little

as 13% of the database objects qualify as candidates for the refinement

158 CHAPTER 7. THE MATCHING DISTANCE

filter selectivity - TV images

0

10

20

30

40

50

60

70

80

90

100

0,01 1 2 3 4 5

size of result set (% of DB size)

nu
m

be
r o

f c
an

di
da

te
s

(%
 o

f D
B

 s
iz

e)

Figure 7.8: Average filter selectivity for the TV image data set.

step.

The results for the pictograph data set, as shown in figure 7.9,

emphasize the high selectivity of the filter method. Even for a quite

large result size of 10%, more than 82% of the database objects are

removed by the filter.

Using only the TV image data set, we also compared our multi-step

query processing architecture with a system using an M-tree index and

with the sequential scan. Figure 7.10 shows the average runtimes for

100 k-nearest-neighbor queries and various values of k. It shows that

our approach outperforms the index approach and the sequential scan.

It reduces the runtime by a factor between 2.7 and 11.5 compared to

the index approach and by a factor between 4 and 35 for the sequential

scan.

It has to be mentioned that we did not use any index structure for

efficient search in the set of filter vectors for this experiment. The use of

7.6. EXPERIMENTAL EVALUATION 159

filter selectivity - pictographs

0

10

20

30

40

50

60

70

80

90

100

0,1 1 5 10

size of result set (% of DB size)

nu
m

be
r o

f c
an

di
da

te
s

(%
 o

f D
B

 s
iz

e)

Figure 7.9: Average filter selectivity for the pictograph data set.

0

5

10

15

20

25

0,001 1 2 3 4 5 10
size of result set (% of DB size)

av
g.

 ru
nt

im
e

(in
 s

ec
.)

filter method M-tree sequential scan

Figure 7.10: Comparison of the runtimes between our multi-step

query processing architecture, the M-tree index and the sequential

scan. The results shown are average values for 100 queries with the

TV image data set.

160 CHAPTER 7. THE MATCHING DISTANCE

0
10
20
30
40
50
60
70
80
90

100

0,001 1 2 3 4 5 10
size of result set (% of DB size)

av
g.

 n
um

be
r o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns
 (%

 o
f D

B
 s

iz
e)

filter method M-tree sequential scan

Figure 7.11: Comparison of the number of distance calculations be-

tween our multi-step query processing architecture, the M-tree index

and the sequential scan. The results are average values for 100 queries

with the TV image data set.

a suitable index structure should result in an even higher performance

gain for our filter method.

Figure 7.11 shows the number of distance calculations performed

in the course of processing the same queries, which were used to create

figure 7.10. A comparison of the two figures shows that the speed-

up obtained for the multi-step query processing architecture correlates

with the reduction of the number of distance calculations. It becomes

clear from this comparison that the calculations of the edge matching

distance dominate the runtime of the query processing by far. The

extra processing step introduced by the multi-step query processing

architecture, on the other hand, is negligible for the query processing

time.

7.6. EXPERIMENTAL EVALUATION 161

0

20

40

60

80

100

120

1 2 3 4 5 10

size of result set (% of DB size)

av
g.

 ru
nt

im
e

(in
 s

ec
.)

filter method M-tree

Figure 7.12: Comparison of the average runtime between our multi-

step query processing architecture and the M-tree index. The results

are average values for 100 queries with the protein data set.

7.6.2 Protein Similarity

In addition to the image retrieval application, we also tested our ap-

proach with an application from bioinformatics. For our tests, we used

a database for protein classification as described in section 1.4.2. In

this section, we also demonstrated the extraction of the graphs from

the proteins.

In our first experiment, we measured the average runtime for 100

k-nearest-neighbor queries with our multi-step query processing archi-

tecture and with the M-tree index. The results, which are shown in

figure 7.12, are similar to the results for the image retrieval applica-

tion. Again, the multi-step query processing architecture is between

three and four times faster than the indexing approach. Those speed

162 CHAPTER 7. THE MATCHING DISTANCE

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 10

size of result set (% of DB size)

av
g.

 n
um

be
r o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns
(%

 o
f D

B
 s

iz
e)

filter method M-tree

Figure 7.13: Comparison of the number of distance calculations be-

tween our multi-step query processing architecture and the M-tree in-

dex. The results are average values for 100 queries with the protein

data set.

up factors are quite constant for all sizes of the result set.

Like for the image retrieval application, we also measured the av-

erage number of distance calculations, which were necessary during

query processing for both approaches. Figure 7.13 shows the results

and a comparison with figure 7.12 reveals that the main reason for the

performance gain of the multi-step query processing architecture is the

reduction of the distance calculations.

Again, no index structure was used in the multi-step query pro-

cessing architecture, so that an even greater performance improvement

may be achieved with an appropriate index support for the filter step.

7.6. EXPERIMENTAL EVALUATION 163

min. avg. max.

order 2 6.58 20

size 1 13.47 150

Table 7.1: Statistics of the randomly generated graphs.

7.6.3 Scalability

To investigate the effects of different database sizes on the performance

of our filter technique, we conducted experiments with databases of

randomly generated graphs. The databases contained between 10,000

and 50,000 graphs. The graphs were generated in a two-step process.

First, a random number of vertices in a given range was created. Each

of the vertices was assigned a single attribute value, also in a predefined

range. In a second step, a random number of edges between vertices

was created, avoiding parallel edges. Table 7.1 shows some statistics

of the databases.

We performed 100 k-nearest-neighbor queries with a fixed value for

k on all databases. Figure 7.14 shows the average number of distance

calculations which were necessary for the filter technique and the in-

dex approach. Figure 7.15 shows the average runtimes for the same

experiments.

Again, the multi-step query processing architecture significantly

outperforms the index approach, yielding speed up factors between 3.3

and 3.5. This is mainly caused by the reduction of the necessary dis-

tance calculations, as can be seen in figure 7.14. But a comparison

of the two figures also reveals that the speed up is higher than the

164 CHAPTER 7. THE MATCHING DISTANCE

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

10000 20000 30000 40000 50000

DB size

av
g.

 n
um

be
r o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

filter method M-tree

Figure 7.14: Average number of distance calculations for 100 k-

nearest-neighbor queries and various database sizes (k = 100).

0

2

4

6

8

10

12

10000 20000 30000 40000 50000
DB size

av
g.

 ru
nt

im
e

(in
 s

ec
.)

filter method M-tree

Figure 7.15: Average runtime per query for 100 k-nearest-neighbor

queries and various database sizes (k = 100).

7.7. CONCLUSIONS 165

reduction of the distance calculations. This can be explained by the

fact that distance calculations for objects which are further apart are

more expensive than calculations of smaller distances. Since the filter

step already eliminates objects which are very dissimilar to the query

object, only small distances have to be determined during the refine-

ment step. But in the index structure, some of the routing objects are

usually far from the query object which slows down the traversal of

the index structure.

7.7 Conclusions

In this chapter, we presented a new similarity measure for attributed

graphs. Starting from the vertex matching distance from the field

of image retrieval, we developed the so-called edge matching distance

which is based on minimum-weight maximum matching of the edge

sets of graphs. This measure takes the structural and the attribute

properties of attributed graphs into account and can be calculated in

O(n3) time in the worst case. The moderate time complexity allows

to use it in data mining applications, unlike the common edit dis-

tance. In our experiments, we demonstrated that the edge matching

distance reflects the similarity of graph modeled objects better than

the similar vertex matching distance, while having an almost identical

runtime. Furthermore, we developed a filter refinement architecture

and a filter method for the edge matching distance. Our experiments

showed that this architecture significantly reduces the number of nec-

essary distance calculations and the runtime during query processing.

166 CHAPTER 7. THE MATCHING DISTANCE

Additionally, our approach constitutes a major improvement over the

competing index approach and scales well even for very large data-

bases. Finally, the very good results for our processing architecture

could be reproduced with data from two different application domains

as well as with artifical data. This emphasizes the usefulness of our

approach for wide range of applications.

Chapter 8

Conclusions

We conclude this thesis by a summary of the theoretical and practical

results. After a description of the main contributions, we give an out-

look on the potentials and future work in the area of similarity search

in structured data.

8.1 Background

In this work, we presented our research on efficient similarity search

in large databases of attributed graphs. We started with an analysis

of important challenges for modern database systems. One of those

challenges is the necessity to support complex, internally structured

data, which is founded in the growing importance of database systems

as knowledge bases. Attributed graphs are a natural model for such

complex data objects and, therefore, were the main topic of this thesis.

Another important challenge for modern database systems is the

growing demand for new methods to extract knowledge stored in da-

167

168 CHAPTER 8. CONCLUSIONS

tabases. This task is usually called knowledge discovery in databases.

Many knowledge discovery problems, like clustering, outlier detection

or classification, are based on some notion of similarity. This makes

similarity search in databases an important basic technology.

Finally, the size of databases in science and industry is rapidly

growing and the growth rate is often higher than the increase in com-

puting power. Consequently, the efficiency of search methods gains

more and more importance.

8.2 Contributions

In the first part of the thesis (cf. chapter 2), we investigated the ma-

jor aspects of similarity search in large databases of structured data.

This analysis lead to the formulation of five requirements a similarity

measure for structured data has to fulfill in order to be applicable to

large databases. Those requirements are: support for arbitrary types

of attributed graphs, adaptability, an explanation component for the

measure, moderate computational complexity and the metric proper-

ties.

We started the second part of the thesis with a review of the ex-

isting similarity measures for graphs from the literature. Due to its

practical importance, a thorough discussion of the edit distance for

graphs followed. The review of the existing measures revealed that

none of them fulfills all five requirements.

Because of the great practical relevance of the edit distance for

many similarity search applications, we developed a multi-step query

8.2. CONTRIBUTIONS 169

processing architecture for this measure. We devised efficient filter

methods for the edit distance and the weighted edit distance which

were used for our query processing architecture. An experimental eval-

uation of our approach revealed that the edit distance is applicable to

large databases only with efficient query processing techniques and

that our approach provides the necessary efficiency.

In chapter 6, we investigated efficient similarity search methods for

the important subclass of tree structured data. We developed several

filter methods, which are applicable to the edit distance for trees as

well as to the degree-2 edit distance and provided effective methods

to combine several filter methods. By an experimental evaluation, we

demonstrated that our approach shows superior performance over ex-

isting approaches with data from several different application domains.

Finally, we developed a new similarity measure for attributed graphs,

called the edge matching distance, which fulfills all five requirements

for a similarity measure. The properties of the edge matching distance

were analyzed, both theoretically and by experiments. The usefulness

of the new measure for similarity search was demonstrated with a prac-

tical application. Furthermore, we developed efficient filter methods

for the edge matching distance within a multi-step query processing

architecture. The superiority of our query processing approach over

existing methods was demonstrated through experiments with artifi-

cal data as well as data from bioinformatics and content-based image

retrieval.

170 CHAPTER 8. CONCLUSIONS

8.3 Future Work

We believe that the results achieved by this work open up ample di-

rections for future research. In our opinion, the following points are of

particular interest.

A user-adaptable cost function is a key component of the edge

matching distance which allows to customize the similarity measure for

different applications and user requirements. The effects of different

cost functions on the effectiveness of the edge matching distance should

be further investigated. This should lead to rules for the design of

appropriate cost functions for specific applications.

Another direction of future research is the study of other applica-

tion domains using structured and semi-structured data. Especially

the area of semi-structured data receives more and more attention,

both, from science and industry. We believe that the principles de-

veloped in this work can be helpful in this area. The edge matching

distance measure has to be extended to achieve optimal results for sim-

ilarity search in the growing collections of semi-structured data. Addi-

tionally, the question how those extensions influence the effectiveness

of the filter methods for efficient query processing is very interesting.

Finally, the integration of different efficient query processing tech-

niques provides an interesting field of research. In this work, we showed

that the multi-step query processing approach can be applied very suc-

cessfully to large databases of structured data. But also with standard

indexing approaches good results can be achieved for efficient query

processing, and those techniques are well established in practice. We

8.3. FUTURE WORK 171

believe that the integration of filtering approaches in index structures

would yield significant improvements over both approaches alone.

172 CHAPTER 8. CONCLUSIONS

List of Figures

1 Structured Data 3
1.1 Examples of complex structured data objects. 5
1.2 Graph structured and tree structured objects. 5
1.3 Growth of the GenBank database 6
1.4 The KDD process. 7
1.5 A bipartite graph. 11
1.6 An image and the extracted graph 14
1.7 Example of two docking proteins. 16
1.8 Functional classification of proteins. 17

2 Similarity Search 23
2.1 Similarity based on the feature vector approach. 24
2.2 The concept of distance-based similarity. 27
2.3 Result of a range query for object q. 33
2.4 A nearest-neighbor query. 34
2.5 A k-nearest-neighbor query. 37
2.6 Schema of a multi-step query processing architecture. . 42

3 Similarity Measures for Graphs 47
3.1 The histogram folding technique of Papadopoulos and

Manolopoulos. 50

4 The Edit Distance 61
4.1 Simple edit distance between two graphs. 64

173

174 LIST OF FIGURES

4.2 Algorithm for calculating the edit distance between two
graphs . 75

5 Edit Distance Similarity 77
5.1 L1-distance of attribute histograms 82
5.2 Average number of candidates for exact match queries. 89
5.3 Average precision for exact match queries. 90
5.4 Average number of candidates for various query ranges. 91
5.5 An example of three similar pictographs 91

6.1 Tree alignment example 98
6.2 A single insertion can affect several nodes 102
6.3 Leaf distance of nodes and leaf distance histogram. . . 103
6.4 A maximum leaf path. 104
6.5 Folding techniques for histograms. 108
6.6 A single relabeling can change two histogram bins. . . . 114
6.7 Filtering for continuous weight functions. 115
6.8 Structural and content-based information of a picture. . 119
6.9 Runtime and number of candidates for k-nn-queries on

10,000 color TV images. 121
6.10 Influence of dimensionality of histograms and selectivity. 123
6.11 Scalability versus size of data set. 124
6.12 Runtime and number of candidates of different filter

methods when using a continuous weight function. . . . 125
6.13 Runtimes for filter creation. 126
6.14 Runtime and number of distance computations of dif-

ferent filter methods compared to the M-tree. 127
6.15 Part of a web site tree. 127
6.16 Average runtime and number of candidates for 5-nn

queries. 128

7 The Matching Distance 131
7.1 An image and its attributed relational graph (ARG). . 133
7.2 The general idea of the vertex matching distance. . . . 134

LIST OF FIGURES 175

7.3 Example of an edge matching 139
7.4 Presentation of an edge mapping for the user. 140
7.5 Effectiveness of the edge matching measure 146
7.6 A cluster of portraits in the TV images. 147
7.7 Effect of changing a single attribute in a graph 151
7.8 Average filter selectivity for the TV image data set. . . 158
7.9 Average filter selectivity for the pictograph data set. . . 159
7.10 Comparison of runtimes (image data). 159
7.11 Comparison of the number of distance calculations (im-

age data). 160
7.12 Comparison of the average runtime (protein data). . . . 161
7.13 Comparison of the number of distance calculations (pro-

tein data). 162
7.14 Average number of distance calculations for 100 k-nearest-

neighbor queries and various database sizes (k = 100). . 164
7.15 Average runtime per query for 100 k-nearest-neighbor

queries and various database sizes (k = 100). 164

176 LIST OF FIGURES

List of Tables

1.1 Statistics of the image data sets. 15
1.2 Statistics of the protein data sets. 19

5.1 Edit distance of the pictographs in figure 5.5. 92
5.2 Weighted edit distance of the pictographs in figure 5.5. 92

6.1 Statistics of the data set. 120

7.1 Statistics of the randomly generated graphs. 163

177

178 LIST OF TABLES

References

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter
Kriegel, and Jörg Sander. Optics: Ordering points
to identify the clustering structure. In Alex Delis,
Christos Faloutsos, and Shahram Ghandeharizadeh, ed-
itors, Proc. ACM SIGMOD Int. Conf. on Managment
of Data, pages 49–60. ACM Press, 1999.

[AFS93] Rakesh Agrawal, Christos Faloutsos, and Arun N.
Swami. Efficient similarity search in sequence databa-
ses. In D. Lomet, editor, Proceedings of the 4th Interna-
tional Conference of Foundations of Data Organization
and Algorithms (FODO), pages 69–84, Chicago, Illinois,
1993. Springer Verlag.

[AKKT99] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and Seidl
T. Nearest neighbor classification in 3D protein data-
bases. In Proc. 7th Int. Conf. on Intelligent Systems for
Molecular Biology (ISMB’99), pages 34–43, Heidelberg,
Germany, 1999. AAAI Press.

[BBJ+00] Stefan Berchtold, Christian Böhm, H.V. Jagadish,
Hans-Peter Kriegel, and Jörg Sander. Independent
quantization: An index compression technique for high-
dimensional data spaces. In Proccedings of the 16th
International Conference on Data Engineering, pages
577–588, 2000.

179

180 REFERENCES

[BGM82] La´szló Babai, D. Grigoryev, and David M. Mount. Iso-
morphism of graphs with bounded eigenvalue multiplic-
ity. In Proc. 14th Annual ACM Symposium on Theory
of Computing, San Francisco, CA, pages 310–324, 1982.

[BKAW97] I. Bruno, N. Kemp, P. Artymiuk, and P. Willet. Rep-
resentation and searching of carbohydrate structures
using graph-theoretic techniques. Pattern Recognition
Letters, 304:61–67, 1997.

[BKK96] Stefan Berchtold, Daniel Keim, and Hans-Peter Kriegel.
The X-tree: An index structure for high-dimensional
data. In 22nd Conference on Very Large Databases,
pages 28–39, Bombay, India, 1996.

[BKML+03] Denis A. Benson, Ilene Karsch-Mizrachi, David J. Lip-
man, James Ostell, and David L. Wheeler. GenBank.
Nucleic Acids Research, 31(1):23–27, 2003.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schnei-
der, and Bernhard Seeger. The R∗-tree: An efficient
and robust access method for points and rectangles.
In Proc. ACM SIGMOD Int. Conf. on Managment of
Data, pages 322–331, Atlantic City, NJ, 1990.

[BM72] Rudolph Bayer and Edward M. McCreight. Organiza-
tion and maintenance of large ordered indices. Acta
Informatica, 1(3):173–189, 1972.

[BÖ97] Tolga Bozkaya and Z. Meral Özsoyoglu. Distance-based
indexing for high-dimensional metric spaces. In Joan
Peckham, editor, Proc. ACM SIGMOD Int. Conf. on
Managment of Data, pages 357–368. ACM Press, 1997.

[Bri95] Sergey Brin. Near neighbor search in large metric
spaces. In Umeshwar Dayal, Peter M. D. Gray, and
Shojiro Nishio, editors, Proc. 21st Int. Conf. on Very

REFERENCES 181

Large Data Bases (VLDB), Zurich, Switzerland, pages
574–584. Morgan Kaufmann, 1995.

[BS98] Horst Bunke and Kim Shearer. A graph distance met-
ric based on the maximal common subgraph. Pattern
Recognition Letters, 19(3-4):255–259, 1998.

[BWF+00] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland,
T. N. Bhat, I.N. Shindyalov, and P.E. Bourne. The
Protein Data Bank. Nucleic Acids Research, 28:235–
242, 2000.

[CKS98] G. Chartrand, G. Kubicki, and M. Schultz. Graph sim-
ilarity and distance in graphs. Aequationes Mathemat-
icae, 55(1-2):129–145, 1998.

[CNBYM01] E. Chavez, G. Navarro, R. Baeza-Yates, and J.L. Mar-
roquin. Searching in metric spaces. ACM Computing
Surveys, 33(3):273–321, 2001.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-
tree: An efficient access method for similarity search
in metric spaces. In Matthias Jarke, Michael J.
Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Per-
icles Loucopoulos, and Manfred A. Jeusfeld, editors,
VLDB’97, Proc. of 23rd International Conference on
Very Large Databases, August 25-29, 1997, Athens,
Greece, pages 426–435. Morgan Kaufmann, 1997.

[EKS02] Martin Ester, Hans-Peter Kriegel, and Matthias Schu-
bert. Web site mining: A new way to spot competi-
tors, customers and suppliers in the world wide web.
In Proc. of the ACM SIGKDD int. Conf on Knowledge
Discovery in Databases (SIGKDD’02), Edmonton, Al-
berta, Canada, pages 249–258, 2002.

182 REFERENCES

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Evan-
gelos Simoudis, Jiawei Han, and Usama Fayyad, editors,
Second International Conference on Knowledge Discov-
ery and Data Mining, pages 226–231, Portland, Oregon,
1996. AAAI Press.

[FPSS96] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth.
Knowledge discovery and data mining: Towards a uni-
fying framework. In Proceedings 2nd International
Conference on Knowledge Discovery and Data Mining,
pages 82–88, 1996.

[GJ79] M. Garey and D. Johnson. Intractability: A Guide to
the Theory of NP-Completeness. Freeman and Com-
pany, 1979.

[Got82] O. Gotoh. An improved algorithm for matching biolog-
ical sequences. Journal of Molecular Biology, 162:705–
708, 1982.

[Gut84] Antonin Guttman. R-trees: A dynamic index struc-
ture for spatial searching. In Beatrice Yormark, edi-
tor, Proc. ACM SIGMOD Int. Conf. on Managment of
Data, pages 47–57, 1984.

[HS95] Gisli R. Hjaltason and Hanan Samet. Ranking in spa-
tial databases. In Max J. Egenhofer and John R.
Herring, editors, Advances in Spatial Databases, 4th
International Symposium, SSD’95, Portland, Maine,
USA, August 6-9, 1995, Proceedings, volume 951 of Lec-
ture Notes in Computer Science, pages 83–95. Springer,
1995.

REFERENCES 183

[HT71] John E. Hopcroft and Robert E. Tarjan. A V 2 algo-
rithm for determining isomorphism of planar graphs.
Information Processing Letters, 1(1):32–34, 1971.

[Jar03] Sverre Jarp. Storing and processing of huge experimen-
tal data at CERN. In Hans W. Meuer, editor, Proceed-
ings of the 18th Internationla Supercomputer Confer-
ence ISC2003, Heidelberg, June 25-27 2003.

[JWZ94] T. Jiang, L. Wang, and K. Zhang. Alignment of trees
- an alternative to tree edit. Proc. Int. Conf. on Com-
binatorial Pattern Matching (CPM), LNCS, 807:75–86,
1994.

[KKSS04] Karin Kailing, Hans-Peter Kriegel, Stefan Schönauer,
and Thomas Seidl. Efficient similarity search in large
databases of tree structured objects. In to appear in
Proc. ICDE 2004, 2004.

[KKV90] E. Kubicka, G. Kubicki, and I. Vakalis. Using graph
distance in object recognition. In Proc. ACM Computer
Science Conference, pages 43–48, 1990.

[KS86] Hans-Peter Kriegel and Bernhard Seeger. Multidimen-
sional order preserving linear hashing with partial ex-
pansions. In Giorgio Ausiello and Paolo Atzeni, edi-
tors, Proceedings International Conference on Database
Theory (ICDT’86), Rome, Italy, volume 243 of Lecture
Notes in Computer Science, pages 203–220. Springer,
1986.

[KS03] Hans-Peter Kriegel and Stefan Schönauer. Similar-
ity search in structured data. In Yahiko Kambayashi,
Mukesh Mohania, and Wolfram Wöß, editors, Proc. 5th
International Conference, DaWaK 2003, Prague, Czech
Republic, volume 2737 of Lecture Notes in Computer
Science, pages 309–319, 2003.

184 REFERENCES

[KSF+98] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos,
Eliot Siegel, and Zenon Protopapas. Fast and effec-
tive retrieval of medical tumor shapes. IEEE Transac-
tions on Knowledge and Data Engineering, 10(6):889–
904, 1998.

[KST93] J. Köbler, U. Schöning, and J. Torán. The Graph
Isomorphism Problem - Its Structural Complexity.
Birkhäuser, Boston, 1993.

[Kuh55] H. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2:83–97,
1955.

[Lev66] V. Levenshtein. Binary codes capable of correcting dele-
tions, insertions and reversals. Soviet Physics-Doklady,
10:707–710, 1966.

[Luk82] Eugene M. Luks. Isomorphism of graphs of bounded
valence can be tested in polynomial time. Journal of
Computer and System Sciences, 1(25):42–65, 1982.

[MAH+95] R. Meier, F. Ackermann, G. Hermann, S. Posch, and
G. Sagerer. Segmentation of molecular surfaces based
on their convex hull. In Proceedings of the International
Conference on Image Processing, pages 552–555. IEEE
Computer Society Press, 1995.

[Mes96] Bruno Messmer. Efficient Graph Matching Algorithms
for Preprocessed Model Graphs. PhD thesis, University
Bern, Switzerland, 1996.

[MGMR02] Segey Melnik, Hector Garcia-Molina, and Erhard
Rahm. Similarity flooding: A versatile graph match-
ing algorithm and ist application to schema matching.
In Proceedings of the 18th International Conference on

REFERENCES 185

Data Engineering (ICDE), pages 117–128, San Jose,
CA, 2002.

[Mun57] J. Munkres. Algorithms for the assignment and trans-
portation problems. Journal of the SIAM, 6:32–38,
1957.

[NBE+93] W. Niblack, R. Barber, W. Equitz, M. Flickner,
E. Glasmann, D. Petkovic, P. Yanker, C. Faloutsos, and
G. Taubin. The QBIC project: Querying images by con-
tent, using color, texture, and shape. In SPIE 1993 Int.
Symposium on Electronic Imaging: Science and Tech-
nology Conference, volume 1908, pages 173–187, 1993.

[NHS84] Jürg Nievergelt, Hans Hinterberger, and Kenneth C.
Sevcik. The grid file: An adaptable, symmetric multikey
file structure. ACM Transactions on Database Systems,
9(1):38–71, 1984.

[NW70] S.B. Needleman and C.D. Wunsch. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[Pet02] Euripides Petrakis. Design and evaluation of spatial
similarity approaches for image retrieval. Image and
Vision Computing, 20(1):59–76, 2002.

[PM99] A. Papadopoulos and Y. Manolopoulos. Structure-
based similarity search with graph histograms. In Proc.
DEXA/IWOSS Int. Workshop on Similarity Search,
pages 174–178. IEEE Computer Society Press, 1999.

[RKV95] Nick Roussopoulos, Stephen Kelley, and Frédéic Vin-
cent. Nearest neighbor queries. In Michael J. Carey and
Donovan A. Schneider, editors, Proceedings of the 1995

186 REFERENCES

ACM SIGMOD International Conference on Manage-
ment of Data, San Jose, California, May 22-25, 1995,
pages 71–79. ACM Press, 1995.

[SB97] K Shearer and H. Bunke. Efficient graph matching
for video indexing. In Proceedings of the IAPR-TC15
Workshop on Graph based Representations, pages 1–6,
Lyon, France, 1997.

[Sch99] Stefan Schönauer. The XO-tree – object oriented de-
sign, implementation and evaluation of an index struc-
ture for high dimensional data spaces, based on ovaloid
approximation. Master’s thesis, Ludwig-Maximilians
University, Munich, Germany, 1999.

[Sei97] Thomas Seidl. Adaptable Similarity Search in 3-D Spa-
tial Database Systems. PhD thesis, University Munich,
1997.

[SF83] Alberto Sanfeliu and King-Sun Fu. A distance mea-
sure between attributed relational graphs for pattern
recognition. IEEE Transactions on Systems, Man and
Cybernetics, 13(3):353–362, 1983.

[SK97] Thomas Seidl and Hans-Peter Kriegel. Efficient user-
adaptable similarity search in large multimedia data-
bases. In Matthias Jarke, Michael J. Carey, Klaus R.
Dittrich, Frederick H. Lochovsky, Pericles Loucopoulos,
and Manfred A. Jeusfeld, editors, Proceedings of 23rd
International Conference on Very Large Data Bases
(VLDB’97), pages 506–515, Athens, Greece, 1997. Mor-
gan Kaufmann.

[SK98] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-
step k-nearest neighbor search. In Laura M. Haas and
Ashutosh Tiwary, editors, Proc. ACM SIGMOD Int.

REFERENCES 187

Conf. on Managment of Data, pages 154–165. ACM
Press, 1998.

[SKK01] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recog-
nition of shapes by editing shock graphs. In Proc. 8th
Int. Conf. on Computer Vision (ICCV’01), Vancouver,
BC, Canada, volume 1, pages 755–762, 2001.

[SM81] T.F. Smith and Waterman M.S. Identification of com-
mon molecular subsequences. Journal of Molecular Bi-
ology, 147:195–197, 1981.

[Tor00] Jacobo Toran. On the hardness of graph isomorphism.
In Proceedings 41st Annual Symposium on Foundations
of Computer Science (FOCS), pages 180–186, 2000.

[TTSF00] Caetano Jr. Traina, Agma Traina, Bernhard Seeger,
and Christos Faloutsos. Slim-trees: High performance
metric trees minimizing overlap between nodes. In
Carlo Zaniolo, Peter C. Lockemann, Marc H. Scholl,
and Torsten Grust, editors, Advances in Database Tech-
nology - EDBT 2000, 7th International Conference on
Extending Database Technology, Konstanz, Germany,
March 27-31, 2000, Proceedings, volume 1777 of Lec-
ture Notes in Computer Science, pages 51–65. Springer,
2000.

[Uhl] J. Uhlmann. Satisfying general proximity/similarity
queries with metric trees. Information Processing Let-
ters, 40:175–179.

[Val02] Gabriel Valiente. Algorithms on Trees and Graphs.
Springer-Verlag, Berlin Heidelberg New York, 1 edition,
2002.

188 REFERENCES

[WF74] Robert A. Wagner and Michael J. Fisher. The string-
to-string correction problem. Journal of the ACM,
21(1):168–173, 1974.

[WFKvdM97] Laurenz Wiskott, Jean-Marc Fellous, Norbert Krüger,
and Christoph von der Malsburg. Face recognition by
elastic bunch graph matching. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):775–
779, 1997.

[WSB98] Roger Weber, Hans-Jörg Schek, and Stephen Blott.
A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces.
In Ashish Gupta, Oded Shmueli, and Jennifer Widom,
editors, Proc. 24th International Conference on Very
Large Databases, pages 194–205. Morgan Kaufmann,
1998.

[WZJS94] J. Wang, K. Zhang, K. Jeong, and D. Shasha. A system
for approximate tree matching. IEEE Transactions on
Knowledge and Data Engineering, 6(4):559–571, 1994.

[Yia93] P. Yianilos. Data structures and algorithms for near-
est neighbor serch in general metric spaces. In Proc.
4th ACM-SIAM Symposion on Discrete Algorithms
(SODA’93), pages 311–321, 1993.

[Zha96] K. Zhang. A constrained editing distance between
unordered labeled trees. Algorithmica, 15(6):205–222,
1996.

[ZJ94] Kaizhong Zhang and Tao Jiang. Some MAX SNP-hard
results concerning unordered labeled trees. Information
Processing Letters, 49:249–254, 1994.

REFERENCES 189

[ZSS92] Kaizhong Zhang, R. Statman, and Dennis Shasha. On
the editing distance between unordered labeled trees.
Information Processing Letters, 42:133–139, 1992.

[ZWS96] K. Zhang, J. Wang, and D. Shasha. On the editing dis-
tance between undirected acyclic graphs. International
Journal of Foundations of Computer Science, 7(1):43–
57, 1996.

190 REFERENCES

Curriculum Vitae

Stefan Schönauer was born on March 4, 1974 in Pfaffenhofen an der

Ilm, Germany. He attended primary school and high school in Pfaf-

fenhofen, where he received his high school degree in 1993.

He entered the Ludwig-Maximilians-Universität (LMU) in Novem-

ber 1993, studying Computer Science with a minor in Law. In May

1999 he passed the final examination and received his diploma de-

gree. During this time, he worked for the SIEMENS AG several times

within internships. His diploma thesis was on the topic ’The XO-tree

- Object oriented design, implementation and evaluation of an index

structure for high dimensional data spaces, based on ovaloid approxi-

mation’ which was supervised by Professor Dr. Hans-Peter Kriegel at

the Institute for Computer Science, LMU.

In June 1999, Stefan Schönauer joined the research group of Pro-

fessor Dr. Hans-Peter Kriegel at LMU, where he works as a research

191

192 CURRICULUM VITAE

and teaching assistant. His research interests include similarity search

in structured data and database support for bioinformatics.

	Acknowledgment
	Abstract
	Abstract (in German)
	I Introduction
	Structured Data
	Introduction
	Challenges for Modern Database Systems
	Complex Data Types
	The Fast Growing Size of Databases
	New Database Tasks

	Graphs
	Important Properties of Graphs
	Storing Graphs

	Example Applications
	Content-Based Image Similarity
	Bioinformatics

	Conclusions and Outline of the Thesis

	Similarity Search
	Similarity Models
	The Feature Vector Approach
	Distance-Based Similarity
	Invariance against Transformations
	Adaptable Similarity Search

	Similarity Query Types
	Similarity Range Query
	Nearest-Neighbor Query
	k-Nearest-Neighbor Query
	Similarity Ranking Query

	Efficient Similarity Search
	Index Structures
	Multi-step Query Processing

	Requirements for Similarity Measures
	Conclusion

	II Similarity of Structured Data
	Similarity Measures for Graphs
	Measures for Graphs
	The Edit Distance for Graphs
	The Measure of Papadopoulos and Manolopoulos
	The -distance Similarity Measure
	Similarity Based on the Maximal Common Subgraph
	Error-Correcting Graph Matching

	Similarity Measures for Trees

	The Edit Distance
	Definition
	Variants of the Edit Distance
	Weighted Edit Distance
	Edit Distance for Trees
	The Measure of Papadopoulos and Manolopoulos

	The Time Complexity of the Edit Distance
	Graph Isomorphism
	Time Complexity of the Edit Distance

	Determining the Edit Distance
	Summary

	Edit Distance Similarity
	Handling the Computational Complexity
	Filters for the Edit Distance
	Filters for the Simple Edit Distance
	Filters for the Weighted Edit Distance

	Evaluation of the Filter Methods
	Conclusion

	Similarity of Trees
	Similarity Measures for Trees
	The Edit Distance for Trees
	Tree Alignment
	The Degree-2 Edit Distance

	Filters for unordered trees
	Filtering Based on the Height of Nodes
	Filtering Based on the Breadth of Trees
	Filtering based on degree of nodes
	Filtering based on node labels
	Combining filter methods

	Experimental Evaluation
	Image databases
	Web site graphs

	Conclusions

	The Matching Distance
	Introduction
	The Vertex Matching Distance
	Properties of the vertex matching distance
	Problems of the vertex matching distance

	The Edge Matching Distance
	Properties of the Edge Matching Distance

	Effectiveness of the Matching Distance
	Efficient Query Processing
	Metric Index Structures
	Filter Methods for the Edge Matching Distance

	Experimental Evaluation
	Image retrieval
	Protein Similarity
	Scalability

	Conclusions

	Conclusions
	Background
	Contributions
	Future Work

	List of Figures
	List of Tables
	References
	Curriculum Vitae

